文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于压缩感知的欠采样 DSI 中网格和壳基采样方案的高保真逼近:事后验证。

High-fidelity approximation of grid- and shell-based sampling schemes from undersampled DSI using compressed sensing: Post mortem validation.

机构信息

Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA.

Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA.

出版信息

Neuroimage. 2021 Dec 1;244:118621. doi: 10.1016/j.neuroimage.2021.118621. Epub 2021 Sep 26.


DOI:10.1016/j.neuroimage.2021.118621
PMID:34587516
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8631240/
Abstract

While many useful microstructural indices, as well as orientation distribution functions, can be obtained from multi-shell dMRI data, there is growing interest in exploring the richer set of microstructural features that can be extracted from the full ensemble average propagator (EAP). The EAP can be readily computed from diffusion spectrum imaging (DSI) data, at the cost of a very lengthy acquisition. Compressed sensing (CS) has been used to make DSI more practical by reducing its acquisition time. CS applied to DSI (CS-DSI) attempts to reconstruct the EAP from significantly undersampled q-space data. We present a post mortem validation study where we evaluate the ability of CS-DSI to approximate not only fully sampled DSI but also multi-shell acquisitions with high fidelity. Human brain samples are imaged with high-resolution DSI at 9.4T and with polarization-sensitive optical coherence tomography (PSOCT). The latter provides direct measurements of axonal orientations at microscopic resolutions, allowing us to evaluate the mesoscopic orientation estimates obtained from diffusion MRI, in terms of their angular error and the presence of spurious peaks. We test two fast, dictionary-based, L2-regularized algorithms for CS-DSI reconstruction. We find that, for a CS acceleration factor of R=3, i.e., an acquisition with 171 gradient directions, one of these methods is able to achieve both low angular error and low number of spurious peaks. With a scan length similar to that of high angular resolution multi-shell acquisition schemes, this CS-DSI approach is able to approximate both fully sampled DSI and multi-shell data with high accuracy. Thus it is suitable for orientation reconstruction and microstructural modeling techniques that require either grid- or shell-based acquisitions. We find that the signal-to-noise ratio (SNR) of the training data used to construct the dictionary can have an impact on the accuracy of CS-DSI, but that there is substantial robustness to loss of SNR in the test data. Finally, we show that, as the CS acceleration factor increases beyond R=3, the accuracy of these reconstruction methods degrade, either in terms of the angular error, or in terms of the number of spurious peaks. Our results provide useful benchmarks for the future development of even more efficient q-space acceleration techniques.

摘要

虽然从多壳 dMRI 数据中可以获得许多有用的微观结构指数和取向分布函数,但人们越来越感兴趣的是探索可以从完整的整体平均传播子(EAP)中提取的更丰富的微观结构特征集。EAP 可以从扩散谱成像(DSI)数据中轻松计算出来,但代价是采集时间非常长。压缩感知(CS)已被用于通过减少采集时间使 DSI 更实用。CS 应用于 DSI(CS-DSI)试图从明显欠采样的 q 空间数据中重建 EAP。我们提出了一项死后验证研究,评估 CS-DSI 不仅能够近似完全采样的 DSI,而且能够以高精度近似多壳采集的能力。在 9.4T 下使用高分辨率 DSI 和偏振敏感光学相干断层扫描(PSOCT)对人脑样本进行成像。后者以微观分辨率直接测量轴突取向,使我们能够根据扩散 MRI 获得的介观取向估计值,评估其角度误差和虚假峰值的存在。我们测试了两种快速的、基于字典的、L2 正则化算法来进行 CS-DSI 重建。我们发现,对于 CS 加速因子 R=3,即采集 171 个梯度方向,其中一种方法能够同时实现低角度误差和低虚假峰值数量。使用类似于高角度分辨率多壳采集方案的扫描长度,这种 CS-DSI 方法能够以高精度近似完全采样的 DSI 和多壳数据。因此,它适用于需要网格或壳基采集的取向重建和微观结构建模技术。我们发现,用于构建字典的训练数据的信噪比(SNR)会影响 CS-DSI 的准确性,但测试数据中 SNR 的损失具有很大的稳健性。最后,我们表明,随着 CS 加速因子超过 R=3,这些重建方法的准确性会降低,无论是在角度误差方面,还是在虚假峰值数量方面。我们的结果为未来更高效的 q 空间加速技术的发展提供了有用的基准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f7/8631240/8cc1cb78402b/nihms-1757346-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f7/8631240/fdb97c9ed803/nihms-1757346-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f7/8631240/f392608885f7/nihms-1757346-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f7/8631240/f2c48752dfa1/nihms-1757346-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f7/8631240/e1b0e08ea0c2/nihms-1757346-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f7/8631240/2b5ec145e122/nihms-1757346-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f7/8631240/8ddc3a9f8b84/nihms-1757346-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f7/8631240/5cef1f667e05/nihms-1757346-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f7/8631240/db61fdedb4ca/nihms-1757346-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f7/8631240/8cc1cb78402b/nihms-1757346-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f7/8631240/fdb97c9ed803/nihms-1757346-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f7/8631240/f392608885f7/nihms-1757346-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f7/8631240/f2c48752dfa1/nihms-1757346-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f7/8631240/e1b0e08ea0c2/nihms-1757346-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f7/8631240/2b5ec145e122/nihms-1757346-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f7/8631240/8ddc3a9f8b84/nihms-1757346-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f7/8631240/5cef1f667e05/nihms-1757346-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f7/8631240/db61fdedb4ca/nihms-1757346-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f7/8631240/8cc1cb78402b/nihms-1757346-f0009.jpg

相似文献

[1]
High-fidelity approximation of grid- and shell-based sampling schemes from undersampled DSI using compressed sensing: Post mortem validation.

Neuroimage. 2021-12-1

[2]
Comparison of basis functions and q-space sampling schemes for robust compressed sensing reconstruction accelerating diffusion spectrum imaging.

NMR Biomed. 2019-1-14

[3]
Generalized diffusion spectrum magnetic resonance imaging (GDSI) for model-free reconstruction of the ensemble average propagator.

Neuroimage. 2019-1-23

[4]
A practical evaluation of measures derived from compressed sensing diffusion spectrum imaging.

Hum Brain Mapp. 2024-4

[5]
HYDI-DSI revisited: Constrained non-parametric EAP imaging without q-space re-gridding.

Med Image Anal. 2023-2

[6]
Joint 6D k-q Space Compressed Sensing for Accelerated High Angular Resolution Diffusion MRI.

Inf Process Med Imaging. 2015

[7]
Multiple q-shell diffusion propagator imaging.

Med Image Anal. 2010-7-14

[8]
Compressed Sensing Diffusion Spectrum Imaging for Accelerated Diffusion Microstructure MRI in Long-Term Population Imaging.

Front Neurosci. 2018-9-24

[9]
Multi-shell diffusion signal recovery from sparse measurements.

Med Image Anal. 2014-10

[10]
Establishing the Validity of Compressed Sensing Diffusion Spectrum Imaging.

bioRxiv. 2023-2-23

引用本文的文献

[1]
An open, fully-processed data resource for studying mood and sleep variability in the developing brain.

bioRxiv. 2025-5-14

[2]
Three-dimensional architecture characteristics and diffusion properties of masticatory muscles assessed with diffusion tensor imaging and diffusion spectrum imaging: a pilot study of differences, reproducibility and sensitivity to microenvironment changes.

BMC Musculoskelet Disord. 2025-4-24

[3]
Three-dimensional fiber orientation mapping of ex vivo human brain at micrometer resolution.

Npj Imaging. 2025

[4]
Considerations and recommendations from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 3-Ex vivo imaging: Data processing, comparisons with microscopy, and tractography.

Magn Reson Med. 2025-6

[5]
Three-dimensional fiber orientation mapping of the human brain at micrometer resolution.

Res Sq. 2024-8-7

[6]
A practical evaluation of measures derived from compressed sensing diffusion spectrum imaging.

Hum Brain Mapp. 2024-4

[7]
Research Progress in Diffusion Spectrum Imaging.

Brain Sci. 2023-10-23

[8]
Using light and X-ray scattering to untangle complex neuronal orientations and validate diffusion MRI.

Elife. 2023-5-11

[9]
Establishing the Validity of Compressed Sensing Diffusion Spectrum Imaging.

bioRxiv. 2023-2-23

[10]
Insights from the IronTract challenge: Optimal methods for mapping brain pathways from multi-shell diffusion MRI.

Neuroimage. 2022-8-15

本文引用的文献

[1]
Computational refocusing in phase-unstable polarization-sensitive optical coherence tomography.

Opt Lett. 2023-9-15

[2]
Post mortem mapping of connectional anatomy for the validation of diffusion MRI.

Neuroimage. 2022-8-1

[3]
Diffusion MRI and anatomic tracing in the same brain reveal common failure modes of tractography.

Neuroimage. 2021-10-1

[4]
Insight into the fundamental trade-offs of diffusion MRI from polarization-sensitive optical coherence tomography in ex vivo human brain.

Neuroimage. 2020-7-1

[5]
High-resolution 3D tractography of fibrous tissue based on polarization-sensitive optical coherence tomography.

Exp Biol Med (Maywood). 2019-12-8

[6]
Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography.

Optica. 2018-10-20

[7]
Simultaneous NODDI and GFA parameter map generation from subsampled q-space imaging using deep learning.

Magn Reson Med. 2018-11-13

[8]
Compressed Sensing Diffusion Spectrum Imaging for Accelerated Diffusion Microstructure MRI in Long-Term Population Imaging.

Front Neurosci. 2018-9-24

[9]
Ex vivo visualization of the trigeminal pathways in the human brainstem using 11.7T diffusion MRI combined with microscopy polarized light imaging.

Brain Struct Funct. 2018-10-6

[10]
Rigid and non-rigid registration of polarized light imaging data for 3D reconstruction of the temporal lobe of the human brain at micrometer resolution.

Neuroimage. 2018-7-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索