Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA.
Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA.
Neuroimage. 2021 Dec 1;244:118621. doi: 10.1016/j.neuroimage.2021.118621. Epub 2021 Sep 26.
While many useful microstructural indices, as well as orientation distribution functions, can be obtained from multi-shell dMRI data, there is growing interest in exploring the richer set of microstructural features that can be extracted from the full ensemble average propagator (EAP). The EAP can be readily computed from diffusion spectrum imaging (DSI) data, at the cost of a very lengthy acquisition. Compressed sensing (CS) has been used to make DSI more practical by reducing its acquisition time. CS applied to DSI (CS-DSI) attempts to reconstruct the EAP from significantly undersampled q-space data. We present a post mortem validation study where we evaluate the ability of CS-DSI to approximate not only fully sampled DSI but also multi-shell acquisitions with high fidelity. Human brain samples are imaged with high-resolution DSI at 9.4T and with polarization-sensitive optical coherence tomography (PSOCT). The latter provides direct measurements of axonal orientations at microscopic resolutions, allowing us to evaluate the mesoscopic orientation estimates obtained from diffusion MRI, in terms of their angular error and the presence of spurious peaks. We test two fast, dictionary-based, L2-regularized algorithms for CS-DSI reconstruction. We find that, for a CS acceleration factor of R=3, i.e., an acquisition with 171 gradient directions, one of these methods is able to achieve both low angular error and low number of spurious peaks. With a scan length similar to that of high angular resolution multi-shell acquisition schemes, this CS-DSI approach is able to approximate both fully sampled DSI and multi-shell data with high accuracy. Thus it is suitable for orientation reconstruction and microstructural modeling techniques that require either grid- or shell-based acquisitions. We find that the signal-to-noise ratio (SNR) of the training data used to construct the dictionary can have an impact on the accuracy of CS-DSI, but that there is substantial robustness to loss of SNR in the test data. Finally, we show that, as the CS acceleration factor increases beyond R=3, the accuracy of these reconstruction methods degrade, either in terms of the angular error, or in terms of the number of spurious peaks. Our results provide useful benchmarks for the future development of even more efficient q-space acceleration techniques.
虽然从多壳 dMRI 数据中可以获得许多有用的微观结构指数和取向分布函数,但人们越来越感兴趣的是探索可以从完整的整体平均传播子(EAP)中提取的更丰富的微观结构特征集。EAP 可以从扩散谱成像(DSI)数据中轻松计算出来,但代价是采集时间非常长。压缩感知(CS)已被用于通过减少采集时间使 DSI 更实用。CS 应用于 DSI(CS-DSI)试图从明显欠采样的 q 空间数据中重建 EAP。我们提出了一项死后验证研究,评估 CS-DSI 不仅能够近似完全采样的 DSI,而且能够以高精度近似多壳采集的能力。在 9.4T 下使用高分辨率 DSI 和偏振敏感光学相干断层扫描(PSOCT)对人脑样本进行成像。后者以微观分辨率直接测量轴突取向,使我们能够根据扩散 MRI 获得的介观取向估计值,评估其角度误差和虚假峰值的存在。我们测试了两种快速的、基于字典的、L2 正则化算法来进行 CS-DSI 重建。我们发现,对于 CS 加速因子 R=3,即采集 171 个梯度方向,其中一种方法能够同时实现低角度误差和低虚假峰值数量。使用类似于高角度分辨率多壳采集方案的扫描长度,这种 CS-DSI 方法能够以高精度近似完全采样的 DSI 和多壳数据。因此,它适用于需要网格或壳基采集的取向重建和微观结构建模技术。我们发现,用于构建字典的训练数据的信噪比(SNR)会影响 CS-DSI 的准确性,但测试数据中 SNR 的损失具有很大的稳健性。最后,我们表明,随着 CS 加速因子超过 R=3,这些重建方法的准确性会降低,无论是在角度误差方面,还是在虚假峰值数量方面。我们的结果为未来更高效的 q 空间加速技术的发展提供了有用的基准。
Med Image Anal. 2023-2
Inf Process Med Imaging. 2015
Med Image Anal. 2010-7-14
Med Image Anal. 2014-10
Neuroimage. 2022-8-1
Exp Biol Med (Maywood). 2019-12-8
Magn Reson Med. 2018-11-13