Suppr超能文献

混合扩散成像

Hybrid diffusion imaging.

作者信息

Wu Yu-Chien, Alexander Andrew L

机构信息

Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Neuroimage. 2007 Jul 1;36(3):617-29. doi: 10.1016/j.neuroimage.2007.02.050. Epub 2007 Mar 24.

Abstract

Diffusion measurements in the human central nervous system are complex to characterize and a broad spectrum of methods have been proposed. In this study, a comprehensive diffusion encoding and analysis approach, hybrid diffusion imaging (HYDI), is described. The HYDI encoding scheme is composed of multiple concentric "shells" of constant diffusion weighting, which may be used to characterize the signal behavior with low, moderate and high diffusion weighting. HYDI facilitates the application of multiple data analyses strategies including diffusion tensor imaging (DTI), multi-exponential diffusion measurements, diffusion spectrum imaging (DSI) and q-ball imaging (QBI). These different analysis strategies may provide complementary information. DTI measures (mean diffusivity and fractional anisotropy) may be estimated from either data in the inner shells or the entire HYDI data. Fast and slow diffusivities were estimated using a nonlinear least squares bi-exponential fit on geometric means of the HYDI shells. DSI measurements from the entire HYDI data yield empirical model-independent diffusion information and are well-suited for characterizing tissue regions with complex diffusion behavior. DSI measurements were characterized using the zero displacement probability and the mean-squared displacement. The outermost HYDI shell was analyzed using QBI analysis to estimate the orientation distribution function (ODF), which is useful for characterizing the directions of multiple fiber groups within a voxel. In this study, an HYDI encoding scheme with 102 diffusion-weighted measurements was obtained over most of the human cerebrum in under 30 min.

摘要

在人类中枢神经系统中进行扩散测量的特征描述很复杂,人们已经提出了各种各样的方法。在本研究中,描述了一种全面的扩散编码和分析方法——混合扩散成像(HYDI)。HYDI编码方案由多个具有恒定扩散权重的同心“壳”组成,可用于表征低、中和高扩散权重下的信号行为。HYDI有助于应用多种数据分析策略,包括扩散张量成像(DTI)、多指数扩散测量、扩散谱成像(DSI)和q球成像(QBI)。这些不同的分析策略可能提供互补信息。DTI测量值(平均扩散率和分数各向异性)可以从内壳中的数据或整个HYDI数据中估计。使用非线性最小二乘双指数拟合对HYDI壳的几何平均值估计快速和慢速扩散率。从整个HYDI数据进行的DSI测量可产生与经验模型无关的扩散信息,非常适合于表征具有复杂扩散行为的组织区域。使用零位移概率和均方位移对DSI测量进行表征。使用QBI分析对最外层的HYDI壳进行分析,以估计方向分布函数(ODF),这对于表征体素内多个纤维组的方向很有用。在本研究中,在不到30分钟的时间内,在大部分人类大脑中获得了具有102次扩散加权测量的HYDI编码方案。

相似文献

1
Hybrid diffusion imaging.混合扩散成像
Neuroimage. 2007 Jul 1;36(3):617-29. doi: 10.1016/j.neuroimage.2007.02.050. Epub 2007 Mar 24.
3
Hybrid diffusion imaging (HYDI).混合扩散成像(HYDI)。
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2245-8. doi: 10.1109/IEMBS.2006.259453.
7
Generalized q-sampling imaging.广义 q 采样成像。
IEEE Trans Med Imaging. 2010 Sep;29(9):1626-35. doi: 10.1109/TMI.2010.2045126. Epub 2010 Mar 18.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验