Suppr超能文献

骨骼肌三维旋转剪切波弹性成像测量的可重复性。

Repeatability of Rotational 3-D Shear Wave Elasticity Imaging Measurements in Skeletal Muscle.

机构信息

Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.

Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.

出版信息

Ultrasound Med Biol. 2023 Mar;49(3):750-760. doi: 10.1016/j.ultrasmedbio.2022.10.012. Epub 2022 Dec 19.

Abstract

Shear wave elasticity imaging (SWEI) usually assumes an isotropic material; however, skeletal muscle is typically modeled as a transversely isotropic material with independent shear wave speeds in the directions along and across the muscle fibers. To capture these direction-dependent properties, we implemented a rotational 3-D SWEI system that measures the shear wave speed both along and across the fibers in a single 3-D acquisition, with automatic detection of the muscle fiber orientation. We tested and examined the repeatability of this system's measurements in the vastus lateralis of 10 healthy volunteers. The average coefficient of variation of the measurements from this 3-D SWEI system was 5.3% along the fibers and 8.1% across the fibers. When compared with estimated respective 2-D SWEI values of 16.0% and 83.4%, these results suggest using 3-D SWEI has the potential to improve the precision of SWEI measurements in muscle. Additionally, we observed no significant difference in shear wave speed between the dominant and non-dominant legs along (p = 0.26) or across (p = 0.65) the muscle fibers.

摘要

剪切波弹性成像(SWEI)通常假定为各向同性材料;然而,骨骼肌通常被建模为具有独立剪切波速度的横观各向同性材料,这些速度在沿着和横跨肌肉纤维的方向上。为了捕捉这些各向异性特性,我们实现了一种旋转 3D SWEI 系统,该系统可以在单次 3D 采集时同时测量纤维内和纤维间的剪切波速度,并自动检测肌肉纤维方向。我们在 10 名健康志愿者的股外侧肌中测试和检查了该系统测量的可重复性。该 3D SWEI 系统的测量值的平均变异系数为纤维内 5.3%,纤维间 8.1%。与估计的各自的 2D SWEI 值 16.0%和 83.4%相比,这些结果表明,使用 3D SWEI 有可能提高肌肉中 SWEI 测量的精度。此外,我们在沿着(p=0.26)或横跨(p=0.65)纤维的优势和非优势腿之间没有观察到剪切波速度的显著差异。

相似文献

1
Repeatability of Rotational 3-D Shear Wave Elasticity Imaging Measurements in Skeletal Muscle.
Ultrasound Med Biol. 2023 Mar;49(3):750-760. doi: 10.1016/j.ultrasmedbio.2022.10.012. Epub 2022 Dec 19.
2
Rotational 3D shear wave elasticity imaging: Effect of knee flexion on 3D shear wave propagation in in vivo vastus lateralis.
J Mech Behav Biomed Mater. 2024 Feb;150:106302. doi: 10.1016/j.jmbbm.2023.106302. Epub 2023 Dec 23.
4
Parametric Analysis of SV Mode Shear Waves in Transversely Isotropic Materials Using Ultrasonic Rotational 3-D SWEI.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Nov;69(11):3145-3154. doi: 10.1109/TUFFC.2022.3203935. Epub 2022 Nov 2.
5
Characterization of anisotropy of elastic modulus with three-dimensional freehand scan shear wave elasticity imaging.
J Med Imaging (Bellingham). 2023 Nov;10(6):066002. doi: 10.1117/1.JMI.10.6.066002. Epub 2023 Nov 17.
6
Prostate Cancer Detection Using 3-D Shear Wave Elasticity Imaging.
Ultrasound Med Biol. 2021 Jul;47(7):1670-1680. doi: 10.1016/j.ultrasmedbio.2021.02.006. Epub 2021 Apr 6.
7
8
Visualization of Human Skeletal Muscle Mechanical Anisotropy by Using Dual-Direction Shear Wave Imaging.
IEEE Trans Biomed Eng. 2022 Sep;69(9):2745-2754. doi: 10.1109/TBME.2022.3152896. Epub 2022 Aug 19.
9
Thee-Dimensional Single-Track-Location Shear Wave Elasticity Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Dec;64(12):1784-1794. doi: 10.1109/TUFFC.2017.2749566. Epub 2017 Sep 6.
10
Tissue elasticity of in vivo skeletal muscles measured in the transverse and longitudinal planes using shear wave elastography.
Clin Physiol Funct Imaging. 2017 Jul;37(4):394-399. doi: 10.1111/cpf.12315. Epub 2015 Dec 22.

引用本文的文献

1
3D rotational shear wave elasticity imaging (3D-RSWEI) in anisotropic lattice phantoms.
J Mech Behav Biomed Mater. 2025 Oct;170:107048. doi: 10.1016/j.jmbbm.2025.107048. Epub 2025 May 26.
2
Four-Dimensional (4D) Ultrasound Shear Wave Elastography Using Sequential Excitation.
IEEE Trans Biomed Eng. 2025 Feb;72(2):786-793. doi: 10.1109/TBME.2024.3472689. Epub 2025 Jan 21.
3
Rotational 3D shear wave elasticity imaging: Effect of knee flexion on 3D shear wave propagation in in vivo vastus lateralis.
J Mech Behav Biomed Mater. 2024 Feb;150:106302. doi: 10.1016/j.jmbbm.2023.106302. Epub 2023 Dec 23.

本文引用的文献

2
3
Reliability of Sonoelastography Measurement of Tongue Muscles and Its Application on Obstructive Sleep Apnea.
Front Physiol. 2021 Mar 25;12:654667. doi: 10.3389/fphys.2021.654667. eCollection 2021.
6
The effect of ageing on shear wave elastography muscle stiffness in adults.
Aging Clin Exp Res. 2019 Dec;31(12):1755-1763. doi: 10.1007/s40520-019-01139-0. Epub 2019 Feb 14.
7
Impact of Acoustic Radiation Force Excitation Geometry on Shear Wave Dispersion and Attenuation Estimates.
Ultrasound Med Biol. 2018 Apr;44(4):897-908. doi: 10.1016/j.ultrasmedbio.2017.12.019. Epub 2018 Feb 5.
8
How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults.
PLoS One. 2017 Dec 29;12(12):e0189876. doi: 10.1371/journal.pone.0189876. eCollection 2017.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验