Zhao Hengli, Pelgrin-Morvan Camille, Maurin Guillaume, Ghoufi Aziz
Institut de Physique de Rennes, IPR, CNRS-Université de Rennes 1, UMR CNRS 6251 35042 Rennes France
ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier 34293 France.
Chem Sci. 2022 Nov 15;13(48):14336-14345. doi: 10.1039/d2sc04174j. eCollection 2022 Dec 14.
Metal-organic frameworks are a class of porous solids that exhibit intriguing flexibility under stimuli, leading often to reversible giant structural changes upon guest adsorption. DUT-49(Cu) and MIL-53(Cr) are fascinating flexible MOFs owing to their guest-induced breathing and negative gas adsorption behaviors respectively. Molecular simulation is one of the most relevant tools to examine these phenomena at the atomistic scale and gain a unique understanding of the physics behind them. Although molecular dynamics and Monte Carlo simulations are widely used in the field of porous materials, these methods hardly consider the structural deformation of a soft material upon guest adsorption. In this work, a cutting-edge osmotic molecular dynamics approach is developed to consider simultaneously the fluid adsorption process and material flexibility. We demonstrate that this newly developed computational strategy offers a unique opportunity to gain unprecedented molecular insights into the flexibility of this class of materials.
金属有机框架是一类多孔固体,在刺激下表现出有趣的灵活性,通常在客体吸附时会导致可逆的巨大结构变化。DUT-49(铜)和MIL-53(铬)是迷人的柔性金属有机框架,分别归因于它们的客体诱导呼吸和负气体吸附行为。分子模拟是在原子尺度上研究这些现象并对其背后的物理原理有独特理解的最相关工具之一。尽管分子动力学和蒙特卡罗模拟在多孔材料领域广泛使用,但这些方法几乎不考虑客体吸附时软材料的结构变形。在这项工作中,开发了一种前沿的渗透分子动力学方法,以同时考虑流体吸附过程和材料灵活性。我们证明,这种新开发的计算策略提供了一个独特的机会,以前所未有的分子视角深入了解这类材料的灵活性。