Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China.
Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China.
Sci Bull (Beijing). 2022 Nov 15;67(21):2176-2185. doi: 10.1016/j.scib.2022.10.015. Epub 2022 Oct 19.
The vanadium-based kagome superconductor CsVSb has attracted tremendous attention due to its unexcepted anomalous Hall effect (AHE), charge density waves (CDWs), nematicity, and a pseudogap pair density wave (PDW) coexisting with unconventional strong-coupling superconductivity. The origins of CDWs, unconventional superconductivity, and their correlation with different electronic states in this kagome system are of great significance, but so far, are still under debate. Chemical doping in the kagome layer provides one of the most direct ways to reveal the intrinsic physics, but remains unexplored. Here, we report, for the first time, the synthesis of Ti-substituted CsVSb single crystals and its rich phase diagram mapping the evolution of intertwining electronic states. The Ti atoms directly substitute for V in the kagome layers. CsVTiSb shows two distinct superconductivity phases upon substitution. The Ti slightly-substituted phase displays an unconventional V-shaped superconductivity gap, coexisting with weakening CDW, PDW, AHE, and nematicity. The Ti highly-substituted phase has a U-shaped superconductivity gap concomitant with a short-range rotation symmetry breaking CDW, while long-range CDW, twofold symmetry of in-plane resistivity, AHE, and PDW are absent. Furthermore, we also demonstrate the chemical substitution of V atoms with other elements such as Cr and Nb, showing a different modulation on the superconductivity phases and CDWs. These findings open up a way to synthesise a new family of doped CsVSb materials, and further represent a new platform for tuning the different correlated electronic states and superconducting pairing in kagome superconductors.
基于钒的 Kagome 超导体 CsVSb 由于其异常的反常霍尔效应(AHE)、电荷密度波(CDWs)、向列性以及与非常规强耦合超导性共存的赝隙对密度波(PDW)而引起了极大的关注。CDWs、非常规超导性以及它们与 Kagome 系统中不同电子态的相关性的起源具有重要意义,但迄今为止,仍存在争议。在 Kagome 层中进行化学掺杂是揭示内在物理性质的最直接方法之一,但尚未得到探索。在这里,我们首次报道了 Ti 取代 CsVSb 单晶的合成及其丰富的相图,该相图描绘了交织电子态的演变。Ti 原子直接取代 Kagome 层中的 V。CsVTiSb 在取代后显示出两个截然不同的超导相。Ti 轻度取代相显示出非常规的 V 形超导能隙,同时伴随着 CDW、PDW、AHE 和向列性的减弱。Ti 高度取代相具有 U 形超导能隙,伴随着短程旋转对称破缺 CDW,而长程 CDW、面内电阻率的二倍对称、AHE 和 PDW 则不存在。此外,我们还证明了 V 原子可以用其他元素(如 Cr 和 Nb)进行化学取代,这对超导相和 CDWs 有不同的调制作用。这些发现为合成新的掺杂 CsVSb 材料开辟了道路,并进一步为调节 Kagome 超导体中不同相关电子态和超导配对提供了新的平台。