Becke Axel D
Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada.
J Chem Phys. 2022 Dec 21;157(23):234102. doi: 10.1063/5.0128996.
In a recent paper [A. D. Becke, J. Chem. Phys. 156, 214101 (2022)], we compared two Kohn-Sham density functionals based on physical modeling and theory with the best density-functional power series fits in the literature. With only a handful of physically motivated pre-factors, our functionals matched, and even slightly exceeded, the performance of the best power-series functionals on the general main group thermochemistry, kinetics, and noncovalent interactions (GMTKN55) chemical database of Goerigk et al. [Phys. Chem. Chem. Phys. 19, 32184 (2017)]. This begs the question: how much can their performance be improved by adding power-series terms of our own? We address this question in the present work. First, we describe a series expansion variable that we believe contains more local physics than any other variable considered to date. Then we undertake modest, one-dimensional fits to the GMTKN55 data with our theory-based functional corrected by power-series exchange and dynamical correlation terms. We settle on 12 power-series terms (plus six parent terms) and achieve the lowest GMTKN55 "WTMAD2" error yet reported, by a substantial margin, for a hybrid Kohn-Sham density functional. The new functional is called "B22plus."
在最近的一篇论文中[A. D. 贝克,《化学物理杂志》156, 214101 (2022)],我们基于物理建模和理论,将两种Kohn-Sham密度泛函与文献中最佳的密度泛函幂级数拟合进行了比较。仅用少数几个基于物理的前置因子,我们的泛函就在Goerigk等人的通用主族热化学、动力学和非共价相互作用(GMTKN55)化学数据库[《物理化学化学物理》19, 32184 (2017)]上匹配甚至略微超过了最佳幂级数泛函的性能。这就引出了一个问题:通过添加我们自己的幂级数项,它们的性能能提高多少?我们在本工作中解决这个问题。首先,我们描述了一个级数展开变量,我们认为它比迄今为止考虑的任何其他变量包含更多的局部物理信息。然后,我们用基于我们理论的泛函,通过幂级数交换项和动态相关项进行修正,对GMTKN55数据进行适度的一维拟合。我们确定了12个幂级数项(加上6个母体项),并以较大优势实现了混合Kohn-Sham密度泛函迄今报告的最低GMTKN55“WTMAD2”误差。这个新的泛函被称为“B22plus”。