Suppr超能文献

加倍重视密度泛函理论。

Doubling down on density-functional theory.

作者信息

Becke Axel D

机构信息

Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada.

出版信息

J Chem Phys. 2023 Dec 28;159(24). doi: 10.1063/5.0178236.

Abstract

In a recent paper, Becke et al. [J. Chem. Phys. 158, 151103 (2023)] presented a novel double hybrid density functional, "DH23," whose terms are based on good physics. Its 12 coefficients were trained on the GMTKN55 (general main-group thermochemistry, kinetics, and noncovalent interactions) chemical database of Goerigk et al. [Phys. Chem. Chem. Phys. 19, 32184 (2017)]. The lowest GMTKN55 "WTMAD2" error to date for any hybrid or double hybrid density functional was obtained (1.76 kcal/mol). Here, we make some revisions to DH23 and test its efficacy on reference data beyond GMTKN55, namely, organometallic reaction energies and barrier heights. The results confirm that DH23 is robust outside its training set. In the process, a slightly smaller GMTKN55 WTMAD2 of 1.73 kcal/mol is achieved.

摘要

在最近的一篇论文中,贝克等人[《化学物理杂志》158, 151103 (2023)]提出了一种新型双杂化密度泛函“DH23”,其各项基于合理的物理学原理。它的12个系数是在戈里格克等人[《物理化学化学物理》19, 32184 (2017)]的GMTKN55(通用主族热化学、动力学和非共价相互作用)化学数据库上进行训练的。对于任何杂化或双杂化密度泛函,迄今获得了最低的GMTKN55“WTMAD2”误差(1.76千卡/摩尔)。在此,我们对DH23进行了一些修订,并在超出GMTKN55的参考数据(即有机金属反应能量和势垒高度)上测试其效能。结果证实DH23在其训练集之外具有稳健性。在此过程中,实现了略小的GMTKN55 WTMAD2,为1.73千卡/摩尔。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验