Department of Physics and Astronomy 'Galileo Galilei', University of Padova, 35121 Padova, Italy.
Institut National de Recherche en Informatique et Automatique (INRIA), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), University of Rennes, 35042 Rennes, France.
Biomolecules. 2022 Nov 28;12(12):1771. doi: 10.3390/biom12121771.
The formation of droplets of bio-molecular condensates through liquid-liquid phase separation (LLPS) of their component proteins is a key factor in the maintenance of cellular homeostasis. Different protein properties were shown to be important in LLPS onset, making it possible to develop predictors, which try to discriminate a positive set of proteins involved in LLPS against a negative set of proteins not involved in LLPS. On the other hand, the redundancy and multivalency of the interactions driving LLPS led to the suggestion that the large conformational entropy associated with non specific side-chain interactions is also a key factor in LLPS. In this work we build a LLPS predictor which combines the ability to form pi-pi interactions, with an unrelated feature, the propensity to stabilize the β-pairing interaction mode. The cross-β structure is formed in the amyloid aggregates, which are involved in degenerative diseases and may be the final thermodynamically stable state of protein condensates. Our results show that the combination of pi-pi and β-pairing propensity yields an improved performance. They also suggest that protein sequences are more likely to be involved in phase separation if the main chain conformational entropy of the β-pairing maintained droplet state is increased. This would stabilize the droplet state against the more ordered amyloid state. Interestingly, the entropic stabilization of the droplet state appears to proceed according to different mechanisms, depending on the fraction of "droplet-driving" proteins present in the positive set.
生物分子凝聚物通过其组成蛋白的液-液相分离(LLPS)形成液滴是维持细胞内稳态的关键因素。不同的蛋白特性被证明在 LLPS 起始中很重要,这使得开发预测器成为可能,预测器试图将参与 LLPS 的阳性蛋白集与不参与 LLPS 的阴性蛋白集区分开来。另一方面,驱动 LLPS 的相互作用的冗余性和多价性导致人们提出,与非特异性侧链相互作用相关的大构象熵也是 LLPS 的一个关键因素。在这项工作中,我们构建了一个 LLPS 预测器,该预测器将形成 π-π 相互作用的能力与一个不相关的特征(稳定 β-配对相互作用模式的倾向)相结合。交叉-β 结构形成于淀粉样纤维中,淀粉样纤维参与退行性疾病,可能是蛋白质凝聚物的最终热力学稳定状态。我们的结果表明,π-π 和 β-配对倾向的组合可提高性能。它们还表明,如果维持液滴状态的β-配对主链构象熵增加,那么蛋白质序列更有可能参与相分离。这将稳定液滴状态,防止更有序的淀粉样状态。有趣的是,根据阳性集中“液滴驱动”蛋白的比例,液滴状态的熵稳定似乎遵循不同的机制。