Suppr超能文献

基于拉曼生物传感技术的抗生素敏感性测试

Antibiotic Susceptibility Testing with Raman Biosensing.

作者信息

Novikov Andrei, Sayfutdinova Adeliya, Botchkova Ekaterina, Kopitsyn Dmitry, Fakhrullin Rawil

机构信息

Department of Physical and Colloid Chemistry, Gubkin University, 65/1 Leninsky Prospect, 119991 Moscow, Russia.

Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia.

出版信息

Antibiotics (Basel). 2022 Dec 14;11(12):1812. doi: 10.3390/antibiotics11121812.

Abstract

Antibiotics guard us against bacterial infections and are among the most commonly used medicines. The immediate consequence of their large-scale production and prescription is the development of antibiotic resistance. Therefore, rapid detection of antibiotic susceptibility is required for efficient antimicrobial therapy. One of the promising methods for rapid antibiotic susceptibility testing is Raman spectroscopy. Raman spectroscopy combines fast and contactless acquisition of spectra with good selectivity towards bacterial cells. The antibiotic-induced changes in bacterial cell physiology are detected as distinct features in Raman spectra and can be associated with antibiotic susceptibility. Therefore, the Raman-based approach may be beneficial in designing therapy against multidrug-resistant infections. The surface-enhanced Raman spectroscopy (SERS) and resonance Raman spectroscopy (RRS) additionally provide excellent sensitivity. In this review, we present an analysis of the Raman spectroscopy-based optical biosensing approaches aimed at antibiotic susceptibility testing.

摘要

抗生素保护我们免受细菌感染,是最常用的药物之一。其大规模生产和处方的直接后果是抗生素耐药性的产生。因此,高效的抗菌治疗需要快速检测抗生素敏感性。快速抗生素敏感性测试的一种有前景的方法是拉曼光谱法。拉曼光谱法结合了快速、非接触式光谱采集以及对细菌细胞的良好选择性。抗生素引起的细菌细胞生理变化在拉曼光谱中被检测为独特特征,并可与抗生素敏感性相关联。因此,基于拉曼的方法可能有助于设计针对多重耐药感染的治疗方案。表面增强拉曼光谱(SERS)和共振拉曼光谱(RRS)还具有出色的灵敏度。在本综述中,我们对旨在进行抗生素敏感性测试的基于拉曼光谱的光学生物传感方法进行了分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac3a/9774239/f5414614c692/antibiotics-11-01812-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验