Thrift William John, Ronaghi Sasha, Samad Muntaha, Wei Hong, Nguyen Dean Gia, Cabuslay Antony Superio, Groome Chloe E, Santiago Peter Joseph, Baldi Pierre, Hochbaum Allon I, Ragan Regina
Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States.
Sage Hill School, Newport Coast, California 92657, United States.
ACS Nano. 2020 Nov 24;14(11):15336-15348. doi: 10.1021/acsnano.0c05693. Epub 2020 Oct 23.
Rapid antimicrobial susceptibility testing (AST) is an integral tool to mitigate the unnecessary use of powerful and broad-spectrum antibiotics that leads to the proliferation of multi-drug-resistant bacteria. Using a sensor platform composed of surface-enhanced Raman scattering (SERS) sensors with control of nanogap chemistry and machine learning algorithms for analysis of complex spectral data, bacteria metabolic profiles post antibiotic exposure are correlated with susceptibility. Deep neural network models are able to discriminate the responses of and to antibiotics from untreated cells in SERS data in 10 min after antibiotic exposure with greater than 99% accuracy. Deep learning analysis is also able to differentiate responses from untreated cells with antibiotic dosages up to 10-fold lower than the minimum inhibitory concentration observed in conventional growth assays. In addition, analysis of SERS data using a generative model, a variational autoencoder, identifies spectral features in the lysate data associated with antibiotic efficacy. From this insight, a combinatorial dataset of metabolites is selected to extend the latent space of the variational autoencoder. This culture-free dataset dramatically improves classification accuracy to select effective antibiotic treatment in 30 min. Unsupervised Bayesian Gaussian mixture analysis achieves 99.3% accuracy in discriminating between susceptible resistant to antibiotic cultures in SERS using the extended latent space. Discriminative and generative models rapidly provide high classification accuracy with small sets of labeled data, which enormously reduces the amount of time needed to validate phenotypic AST with conventional growth assays. Thus, this work outlines a promising approach toward practical rapid AST.
快速抗菌药敏试验(AST)是一种不可或缺的工具,可减少强效和广谱抗生素的不必要使用,而这种使用会导致多重耐药菌的扩散。使用由具有纳米间隙化学控制功能的表面增强拉曼散射(SERS)传感器和用于分析复杂光谱数据的机器学习算法组成的传感器平台,将抗生素暴露后细菌的代谢谱与药敏性相关联。深度神经网络模型能够在抗生素暴露后10分钟内,以高于99%的准确率从SERS数据中的未处理细胞中区分出[具体细菌名称1]和[具体细菌名称2]对抗生素的反应。深度学习分析还能够区分来自未处理细胞的反应,其抗生素剂量比传统生长试验中观察到的最低抑菌浓度低至10倍。此外,使用生成模型(变分自编码器)分析SERS数据,可识别与抗生素疗效相关的[具体细菌名称]裂解物数据中的光谱特征。基于这一见解,选择了一个代谢物组合数据集来扩展变分自编码器的潜在空间。这个无培养数据集显著提高了分类准确率,能够在30分钟内选择有效的抗生素治疗方案。无监督贝叶斯高斯混合分析在使用扩展潜在空间的SERS中区分敏感和耐药抗生素培养物时,准确率达到99.3%。判别模型和生成模型使用少量标记数据就能快速提供高分类准确率,这极大地减少了用传统生长试验验证表型AST所需的时间。因此,这项工作概述了一种有前景的实用快速AST方法。