Suppr超能文献

大数据与人工智能在胃癌药物研发中的应用现状与未来展望

Big Data and Artificial Intelligence in Drug Discovery for Gastric Cancer: Current Applications and Future Perspectives.

作者信息

Nguyen Mai Hanh, Tran Ngoc Dung, Le Nguyen Quoc Khanh

机构信息

International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.

AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan.

出版信息

Curr Med Chem. 2025;32(10):1968-1986. doi: 10.2174/0929867331666230913105829.

Abstract

Gastric cancer (GC) represents a significant global health burden, ranking as the fifth most common malignancy and the fourth leading cause of cancer-related death worldwide. Despite recent advancements in GC treatment, the five-year survival rate for advanced-stage GC patients remains low. Consequently, there is an urgent need to identify novel drug targets and develop effective therapies. However, traditional drug discovery approaches are associated with high costs, time-consuming processes, and a high failure rate, posing challenges in meeting this critical need. In recent years, there has been a rapid increase in the utilization of artificial intelligence (AI) algorithms and big data in drug discovery, particularly in cancer research. AI has the potential to improve the drug discovery process by analyzing vast and complex datasets from multiple sources, enabling the prediction of compound efficacy and toxicity, as well as the optimization of drug candidates. This review provides an overview of the latest AI algorithms and big data employed in drug discovery for GC. Additionally, we examine the various applications of AI in this field, with a specific focus on therapeutic discovery. Moreover, we discuss the challenges, limitations, and prospects of emerging AI methods, which hold significant promise for advancing GC research in the future.

摘要

胃癌(GC)是一项重大的全球健康负担,在全球最常见的恶性肿瘤中排名第五,是癌症相关死亡的第四大主要原因。尽管近年来胃癌治疗取得了进展,但晚期胃癌患者的五年生存率仍然很低。因此,迫切需要确定新的药物靶点并开发有效的治疗方法。然而,传统的药物发现方法成本高、过程耗时且失败率高,在满足这一关键需求方面面临挑战。近年来,人工智能(AI)算法和大数据在药物发现中的应用迅速增加,尤其是在癌症研究中。人工智能有潜力通过分析来自多个来源的大量复杂数据集来改进药物发现过程,从而能够预测化合物的疗效和毒性,并优化候选药物。本综述概述了用于胃癌药物发现的最新人工智能算法和大数据。此外,我们研究了人工智能在该领域的各种应用,特别关注治疗方法的发现。此外,我们讨论了新兴人工智能方法的挑战、局限性和前景,这些方法在未来推进胃癌研究方面具有重大前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验