文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于合成 RNA-Seq 数据比较和评估的框架。

A Framework for Comparison and Assessment of Synthetic RNA-Seq Data.

机构信息

GATE Institute, Sofia University, 125 Tsarigradsko Shosse, Bl. 2, 1113 Sofia, Bulgaria.

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 8, 1113 Sofia, Bulgaria.

出版信息

Genes (Basel). 2022 Dec 14;13(12):2362. doi: 10.3390/genes13122362.


DOI:10.3390/genes13122362
PMID:36553629
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9778097/
Abstract

The ever-growing number of methods for the generation of synthetic bulk and single cell RNA-seq data have multiple and diverse applications. They are often aimed at benchmarking bioinformatics algorithms for purposes such as sample classification, differential expression analysis, correlation and network studies and the optimization of data integration and normalization techniques. Here, we propose a general framework to compare synthetically generated RNA-seq data and select a data-generating tool that is suitable for a set of specific study goals. As there are multiple methods for synthetic RNA-seq data generation, researchers can use the proposed framework to make an informed choice of an RNA-seq data simulation algorithm and software that are best suited for their specific scientific questions of interest.

摘要

越来越多的合成批量和单细胞 RNA-seq 数据生成方法具有多种不同的应用。它们通常旨在针对样本分类、差异表达分析、相关性和网络研究以及优化数据集成和归一化技术等目的,对生物信息学算法进行基准测试。在这里,我们提出了一个通用框架来比较合成生成的 RNA-seq 数据,并选择适合一组特定研究目标的数据生成工具。由于有多种合成 RNA-seq 数据的方法,研究人员可以使用建议的框架来明智地选择最适合其特定科学问题的 RNA-seq 数据模拟算法和软件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0749/9778097/265f831a7fe7/genes-13-02362-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0749/9778097/84eab452b346/genes-13-02362-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0749/9778097/b350f2fb41d7/genes-13-02362-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0749/9778097/3d5de914340f/genes-13-02362-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0749/9778097/1f147fd244ec/genes-13-02362-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0749/9778097/29f6c6888f4a/genes-13-02362-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0749/9778097/9ed1343cc9ba/genes-13-02362-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0749/9778097/3402e3226a8a/genes-13-02362-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0749/9778097/265f831a7fe7/genes-13-02362-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0749/9778097/84eab452b346/genes-13-02362-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0749/9778097/b350f2fb41d7/genes-13-02362-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0749/9778097/3d5de914340f/genes-13-02362-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0749/9778097/1f147fd244ec/genes-13-02362-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0749/9778097/29f6c6888f4a/genes-13-02362-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0749/9778097/9ed1343cc9ba/genes-13-02362-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0749/9778097/3402e3226a8a/genes-13-02362-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0749/9778097/265f831a7fe7/genes-13-02362-g008.jpg

相似文献

[1]
A Framework for Comparison and Assessment of Synthetic RNA-Seq Data.

Genes (Basel). 2022-12-14

[2]
Benchmarking RNA-seq differential expression analysis methods using spike-in and simulation data.

PLoS One. 2020-4-30

[3]
Benchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methods.

BMC Bioinformatics. 2018-7-18

[4]
SimBA: A methodology and tools for evaluating the performance of RNA-Seq bioinformatic pipelines.

BMC Bioinformatics. 2017-9-29

[5]
IBRAP: integrated benchmarking single-cell RNA-sequencing analytical pipeline.

Brief Bioinform. 2023-3-19

[6]
A Phylogenetic Framework to Simulate Synthetic Interspecies RNA-Seq Data.

Mol Biol Evol. 2023-1-4

[7]
Benchmarking association analyses of continuous exposures with RNA-seq in observational studies.

Brief Bioinform. 2021-11-5

[8]
Data-based RNA-seq simulations by binomial thinning.

BMC Bioinformatics. 2020-5-24

[9]
A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies.

Genes (Basel). 2021-12-2

[10]
scINRB: single-cell gene expression imputation with network regularization and bulk RNA-seq data.

Brief Bioinform. 2024-3-27

引用本文的文献

[1]
Challenges and best practices in omics benchmarking.

Nat Rev Genet. 2024-5

[2]
Special Issue: New Advances in Bioinformatics and Biomedical Engineering Using Machine Learning Techniques, IWBBIO-2022.

Genes (Basel). 2023-8-1

本文引用的文献

[1]
Perspectives on Bulk-Tissue RNA Sequencing and Single-Cell RNA Sequencing for Cardiac Transcriptomics.

Front Mol Med. 2022-2-22

[2]
Functional inference of gene regulation using single-cell multi-omics.

Cell Genom. 2022-9-14

[3]
BASS: multi-scale and multi-sample analysis enables accurate cell type clustering and spatial domain detection in spatial transcriptomic studies.

Genome Biol. 2022-8-4

[4]
Missing Value Imputation With Low-Rank Matrix Completion in Single-Cell RNA-Seq Data by Considering Cell Heterogeneity.

Front Genet. 2022-7-14

[5]
Differential Expression Analysis of Single-Cell RNA-Seq Data: Current Statistical Approaches and Outstanding Challenges.

Entropy (Basel). 2022-7-18

[6]
ccImpute: an accurate and scalable consensus clustering based algorithm to impute dropout events in the single-cell RNA-seq data.

BMC Bioinformatics. 2022-7-22

[7]
Benchmarking imputation methods for network inference using a novel method of synthetic scRNA-seq data generation.

BMC Bioinformatics. 2022-6-17

[8]
NISC: Neural Network-Imputation for Single-Cell RNA Sequencing and Cell Type Clustering.

Front Genet. 2022-5-3

[9]
Cell type identification in spatial transcriptomics data can be improved by leveraging cell-type-informative paired tissue images using a Bayesian probabilistic model.

Nucleic Acids Res. 2022-8-12

[10]
A Regularized Multi-Task Learning Approach for Cell Type Detection in Single-Cell RNA Sequencing Data.

Front Genet. 2022-4-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索