GATE Institute, Sofia University, 125 Tsarigradsko Shosse, Bl. 2, 1113 Sofia, Bulgaria.
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 8, 1113 Sofia, Bulgaria.
Genes (Basel). 2022 Dec 14;13(12):2362. doi: 10.3390/genes13122362.
The ever-growing number of methods for the generation of synthetic bulk and single cell RNA-seq data have multiple and diverse applications. They are often aimed at benchmarking bioinformatics algorithms for purposes such as sample classification, differential expression analysis, correlation and network studies and the optimization of data integration and normalization techniques. Here, we propose a general framework to compare synthetically generated RNA-seq data and select a data-generating tool that is suitable for a set of specific study goals. As there are multiple methods for synthetic RNA-seq data generation, researchers can use the proposed framework to make an informed choice of an RNA-seq data simulation algorithm and software that are best suited for their specific scientific questions of interest.
越来越多的合成批量和单细胞 RNA-seq 数据生成方法具有多种不同的应用。它们通常旨在针对样本分类、差异表达分析、相关性和网络研究以及优化数据集成和归一化技术等目的,对生物信息学算法进行基准测试。在这里,我们提出了一个通用框架来比较合成生成的 RNA-seq 数据,并选择适合一组特定研究目标的数据生成工具。由于有多种合成 RNA-seq 数据的方法,研究人员可以使用建议的框架来明智地选择最适合其特定科学问题的 RNA-seq 数据模拟算法和软件。
Genes (Basel). 2022-12-14
BMC Bioinformatics. 2017-9-29
Brief Bioinform. 2023-3-19
Mol Biol Evol. 2023-1-4
Brief Bioinform. 2021-11-5
BMC Bioinformatics. 2020-5-24
Brief Bioinform. 2024-3-27
Nat Rev Genet. 2024-5
Cell Genom. 2022-9-14
BMC Bioinformatics. 2022-6-17