Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
Nucleic Acids Res. 2022 Aug 12;50(14):e80. doi: 10.1093/nar/gkac320.
Spatial transcriptomics technologies have recently emerged as a powerful tool for measuring spatially resolved gene expression directly in tissues sections, revealing cell types and their dysfunction in unprecedented detail. However, spatial transcriptomics technologies are limited in their ability to separate transcriptionally similar cell types and can suffer further difficulties identifying cell types in slide regions where transcript capture is low. Here, we describe a conceptually novel methodology that can computationally integrate spatial transcriptomics data with cell-type-informative paired tissue images, obtained from, for example, the reverse side of the same tissue section, to improve inferences of tissue cell type composition in spatial transcriptomics data. The underlying statistical approach is generalizable to any spatial transcriptomics protocol where informative paired tissue images can be obtained. We demonstrate a use case leveraging cell-type-specific immunofluorescence markers obtained on mouse brain tissue sections and a use case for leveraging the output of AI annotated H&E tissue images, which we used to markedly improve the identification of clinically relevant immune cell infiltration in breast cancer tissue. Thus, combining spatial transcriptomics data with paired tissue images has the potential to improve the identification of cell types and hence to improve the applications of spatial transcriptomics that rely on accurate cell type identification.
空间转录组学技术最近作为一种强大的工具出现,可直接在组织切片中测量空间分辨的基因表达,以前所未有的细节揭示细胞类型及其功能障碍。然而,空间转录组学技术在分离转录相似的细胞类型方面存在局限性,并且在转录捕获率较低的载玻片区域识别细胞类型时可能会遇到进一步的困难。在这里,我们描述了一种概念新颖的方法,可以计算地将空间转录组学数据与细胞类型信息丰富的配对组织图像集成,这些图像可以从组织切片的背面等获得,以改善空间转录组学数据中组织细胞类型组成的推断。这种基于统计的方法适用于任何可以获得信息丰富的配对组织图像的空间转录组学协议。我们展示了一个利用在小鼠脑组织切片上获得的细胞类型特异性免疫荧光标记的应用案例,以及一个利用人工智能注释的 H&E 组织图像输出的应用案例,我们利用该案例显著提高了乳腺癌组织中临床相关免疫细胞浸润的识别。因此,将空间转录组学数据与配对组织图像相结合,有可能提高细胞类型的识别,从而提高依赖于准确细胞类型识别的空间转录组学的应用。