Suppr超能文献

IBRAP:集成基准单细胞 RNA-seq 分析管道。

IBRAP: integrated benchmarking single-cell RNA-sequencing analytical pipeline.

机构信息

Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ.

Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry Medicine & Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom.

出版信息

Brief Bioinform. 2023 Mar 19;24(2). doi: 10.1093/bib/bbad061.

Abstract

Single-cell ribonucleic acid (RNA)-sequencing (scRNA-seq) is a powerful tool to study cellular heterogeneity. The high dimensional data generated from this technology are complex and require specialized expertise for analysis and interpretation. The core of scRNA-seq data analysis contains several key analytical steps, which include pre-processing, quality control, normalization, dimensionality reduction, integration and clustering. Each step often has many algorithms developed with varied underlying assumptions and implications. With such a diverse choice of tools available, benchmarking analyses have compared their performances and demonstrated that tools operate differentially according to the data types and complexity. Here, we present Integrated Benchmarking scRNA-seq Analytical Pipeline (IBRAP), which contains a suite of analytical components that can be interchanged throughout the pipeline alongside multiple benchmarking metrics that enable users to compare results and determine the optimal pipeline combinations for their data. We apply IBRAP to single- and multi-sample integration analysis using primary pancreatic tissue, cancer cell line and simulated data accompanied with ground truth cell labels, demonstrating the interchangeable and benchmarking functionality of IBRAP. Our results confirm that the optimal pipelines are dependent on individual samples and studies, further supporting the rationale and necessity of our tool. We then compare reference-based cell annotation with unsupervised analysis, both included in IBRAP, and demonstrate the superiority of the reference-based method in identifying robust major and minor cell types. Thus, IBRAP presents a valuable tool to integrate multiple samples and studies to create reference maps of normal and diseased tissues, facilitating novel biological discovery using the vast volume of scRNA-seq data available.

摘要

单细胞核糖核酸 (RNA)-测序 (scRNA-seq) 是研究细胞异质性的强大工具。该技术生成的高维数据复杂,需要专门的专业知识进行分析和解释。scRNA-seq 数据分析的核心包含几个关键的分析步骤,包括预处理、质量控制、归一化、降维、整合和聚类。每个步骤通常都有许多具有不同底层假设和含义的算法。由于有如此多样化的工具可供选择,基准分析比较了它们的性能,并证明工具根据数据类型和复杂性的不同而具有不同的功能。在这里,我们提出了 Integrated Benchmarking scRNA-seq Analytical Pipeline (IBRAP),它包含了一套分析组件,可以在整个管道中互换,以及多个基准指标,使用户能够比较结果并确定最适合其数据的最佳管道组合。我们应用 IBRAP 对使用原发性胰腺组织、癌细胞系和模拟数据进行的单细胞和多样本整合分析进行了应用,这些数据都附有地面真实细胞标签,展示了 IBRAP 的可互换性和基准功能。我们的结果证实,最佳管道取决于单个样本和研究,进一步支持了我们工具的合理性和必要性。然后,我们比较了 IBRAP 中包含的基于参考的细胞注释和无监督分析,并证明了基于参考的方法在识别稳健的主要和次要细胞类型方面的优越性。因此,IBRAP 提供了一个有价值的工具,可以整合多个样本和研究,创建正常和患病组织的参考图谱,从而利用可用的大量 scRNA-seq 数据进行新的生物学发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5adf/10025434/497eed813503/bbad061f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验