Suppr超能文献

基于像素阈值分离和注意力机制的改进 V-Net 肺结节分割模型。

An improved V-Net lung nodule segmentation model based on pixel threshold separation and attention mechanism.

机构信息

School of Computer Science and Technology, Nanyang Normal University, Nanyang, 473061, China.

School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China.

出版信息

Sci Rep. 2024 Feb 27;14(1):4743. doi: 10.1038/s41598-024-55178-3.

Abstract

Accurate labeling of lung nodules in computed tomography (CT) images is crucial in early lung cancer diagnosis and before nodule resection surgery. However, the irregular shape of lung nodules in CT images and the complex lung environment make it much more challenging to segment lung nodules accurately. On this basis, we propose an improved V-Net segmentation method based on pixel threshold separation and attention mechanism for lung nodules. This method first offers a data augment strategy to solve the problem of insufficient samples in 3D medical datasets. In addition, we integrate the feature extraction module based on pixel threshold separation into the model to enhance the feature extraction ability under different thresholds on the one hand. On the other hand, the model introduces channel and spatial attention modules to make the model pay more attention to important semantic information and improve its generalization ability and accuracy. Experiments show that the Dice similarity coefficients of the improved model on the public datasets LUNA16 and LNDb are 94.9% and 81.1% respectively, and the sensitivities reach 92.7% and 76.9% respectively. which is superior to most existing UNet architecture models and comparable to the manual level segmentation results by medical technologists.

摘要

在计算机断层扫描 (CT) 图像中准确标记肺结节对于早期肺癌诊断和结节切除术前至关重要。然而,CT 图像中肺结节的不规则形状和复杂的肺部环境使得准确分割肺结节变得更加具有挑战性。在此基础上,我们提出了一种改进的基于像素阈值分离和注意力机制的 V-Net 肺结节分割方法。该方法首先提供了一种数据增强策略,以解决 3D 医学数据集样本不足的问题。此外,我们将基于像素阈值分离的特征提取模块集成到模型中,一方面增强了在不同阈值下的特征提取能力,另一方面,模型引入通道和空间注意力模块,使模型更加关注重要的语义信息,提高其泛化能力和准确性。实验表明,改进后的模型在公共数据集 LUNA16 和 LNDb 上的 Dice 相似系数分别为 94.9%和 81.1%,灵敏度分别达到 92.7%和 76.9%,优于大多数现有的 UNet 架构模型,与医学技术人员的手动分割结果相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f93b/10899216/f0c3d41b97cc/41598_2024_55178_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验