CA-Net:用于可解释医学图像分割的综合注意力卷积神经网络。
CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation.
出版信息
IEEE Trans Med Imaging. 2021 Feb;40(2):699-711. doi: 10.1109/TMI.2020.3035253. Epub 2021 Feb 2.
Accurate medical image segmentation is essential for diagnosis and treatment planning of diseases. Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance for automatic medical image segmentation. However, they are still challenged by complicated conditions where the segmentation target has large variations of position, shape and scale, and existing CNNs have a poor explainability that limits their application to clinical decisions. In this work, we make extensive use of multiple attentions in a CNN architecture and propose a comprehensive attention-based CNN (CA-Net) for more accurate and explainable medical image segmentation that is aware of the most important spatial positions, channels and scales at the same time. In particular, we first propose a joint spatial attention module to make the network focus more on the foreground region. Then, a novel channel attention module is proposed to adaptively recalibrate channel-wise feature responses and highlight the most relevant feature channels. Also, we propose a scale attention module implicitly emphasizing the most salient feature maps among multiple scales so that the CNN is adaptive to the size of an object. Extensive experiments on skin lesion segmentation from ISIC 2018 and multi-class segmentation of fetal MRI found that our proposed CA-Net significantly improved the average segmentation Dice score from 87.77% to 92.08% for skin lesion, 84.79% to 87.08% for the placenta and 93.20% to 95.88% for the fetal brain respectively compared with U-Net. It reduced the model size to around 15 times smaller with close or even better accuracy compared with state-of-the-art DeepLabv3+. In addition, it has a much higher explainability than existing networks by visualizing the attention weight maps. Our code is available at https://github.com/HiLab-git/CA-Net.
准确的医学图像分割对于疾病的诊断和治疗计划至关重要。卷积神经网络 (CNN) 在自动医学图像分割方面取得了最先进的性能。然而,它们仍然面临着复杂的情况,即分割目标的位置、形状和大小变化很大,并且现有的 CNN 可解释性较差,限制了它们在临床决策中的应用。在这项工作中,我们在 CNN 架构中广泛使用了多种注意力,并提出了一种全面的基于注意力的 CNN (CA-Net),用于更准确和可解释的医学图像分割,该网络同时意识到最重要的空间位置、通道和比例。具体来说,我们首先提出了一个联合空间注意力模块,使网络更加关注前景区域。然后,提出了一种新颖的通道注意力模块,自适应地重新校准通道特征响应并突出最重要的相关特征通道。此外,我们还提出了一个尺度注意力模块,隐式强调多个尺度中的最显著特征图,使 CNN 能够自适应对象的大小。在 ISIC 2018 的皮肤病变分割和多类胎儿 MRI 分割的大量实验中发现,与 U-Net 相比,我们提出的 CA-Net 显著提高了皮肤病变的平均分割 Dice 分数(从 87.77%提高到 92.08%)、胎盘(从 84.79%提高到 87.08%)和胎儿大脑(从 93.20%提高到 95.88%)。与最先进的 DeepLabv3+相比,它将模型大小缩小到约 15 倍,并且具有接近甚至更好的准确性。此外,通过可视化注意力权重图,它比现有网络具有更高的可解释性。我们的代码可在 https://github.com/HiLab-git/CA-Net 上获得。
相似文献
IEEE Trans Med Imaging. 2021-2
Comput Biol Med. 2022-12
Heliyon. 2023-11-22
Comput Biol Med. 2023-12
Comput Methods Programs Biomed. 2020-8
Med Image Anal. 2022-2
Comput Methods Programs Biomed. 2024-7
引用本文的文献
Healthcare (Basel). 2025-7-29
Imaging Neurosci (Camb). 2024-7-12
Med Biol Eng Comput. 2025-8-13
Nan Fang Yi Ke Da Xue Xue Bao. 2025-6-20
本文引用的文献
Med Image Anal. 2019-2-5
IEEE Trans Med Imaging. 2019-2
Med Image Anal. 2018-10-19
IEEE Trans Pattern Anal Mach Intell. 2018-6-1
IEEE Trans Med Imaging. 2018-7
Med Image Anal. 2017-7-26
IEEE Trans Biomed Eng. 2017-9
IEEE Trans Pattern Anal Mach Intell. 2017-4-27
IEEE Trans Pattern Anal Mach Intell. 2017-1-2
Med Image Anal. 2016-10-29