Suppr超能文献

用于结肠镜图像内腔场景分割的基准

A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images.

机构信息

Computer Vision Center, Computer Science Department, Universitat Autonoma de Barcelona, Barcelona, Spain.

Montreal Institute for Learning Algorithms, Université de Montréal, Montreal, QC, Canada.

出版信息

J Healthc Eng. 2017;2017:4037190. doi: 10.1155/2017/4037190. Epub 2017 Jul 26.

Abstract

Colorectal cancer (CRC) is the third cause of cancer death worldwide. Currently, the standard approach to reduce CRC-related mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss rate and the inability to perform visual assessment of polyp malignancy. These drawbacks can be reduced by designing decision support systems (DSS) aiming to help clinicians in the different stages of the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of colonoscopy image segmentation, with the hope of establishing a new strong benchmark for colonoscopy image analysis research. The proposed dataset consists of 4 relevant classes to inspect the endoluminal scene, targeting different clinical needs. Together with the dataset and taking advantage of advances in semantic segmentation literature, we provide new baselines by training standard fully convolutional networks (FCNs). We perform a comparative study to show that FCNs significantly outperform, without any further postprocessing, prior results in endoluminal scene segmentation, especially with respect to polyp segmentation and localization.

摘要

结直肠癌(CRC)是全球癌症死亡的第三大原因。目前,降低 CRC 相关死亡率的标准方法是定期进行筛查以寻找息肉,结肠镜检查是首选的筛查工具。这种筛查程序的主要局限性是息肉漏诊率和无法对息肉恶性程度进行视觉评估。通过设计决策支持系统(DSS)可以减少这些缺点,旨在通过提供内腔场景分割来帮助临床医生完成不同阶段的程序。因此,在本文中,我们引入了一个扩展的结肠镜图像分割基准,希望为结肠镜图像分析研究建立一个新的强大基准。所提出的数据集包含 4 个相关类,以检查内腔场景,针对不同的临床需求。我们提供了新的基线,包括数据集和利用语义分割文献的优势,通过训练标准的全卷积网络(FCN)。我们进行了一项比较研究,表明 FCN 在没有任何进一步后处理的情况下,在腔内镜场景分割方面的表现明显优于以往的结果,尤其是在息肉分割和定位方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bd1/5549472/238e7206d560/JHE2017-4037190.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验