Takigawa-Imamura Hisako, Hirano Saito, Watanabe Chisato, Ohtaka-Maruyama Chiaki, Ema Masatsugu, Mizutani Ken-Ichi
Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
Yahata Kousei Hospital, 3-12-12 Satonaka, Yahatanishi-ku, Kitakyushu 807-0846, Japan.
Life (Basel). 2022 Dec 9;12(12):2069. doi: 10.3390/life12122069.
The developing neocortical vasculature exhibits a distinctive pattern in each layer. In murine embryos, vessels in the cortical plate (CP) are vertically oriented, whereas those in the intermediate zone (IZ) and the subventricular zone (SVZ) form a honeycomb structure. The formation of tissue-specific vessels suggests that the behavior of endothelial cells is under a specific regulatory regime in each layer, although the mechanisms involved remain unknown. In the present study, we aimed to explore the conditions required to form these vessel patterns by conducting simulations using a computational model. We developed a novel model framework describing the collective migration of endothelial cells to represent the angiogenic process and performed a simulation using two-dimensional approximation. The attractive and repulsive guidance of tip cells was incorporated into the model based on the function and distribution of guidance molecules such as VEGF and Unc ligands. It is shown that an appropriate combination of guidance effects reproduces both the parallel straight pattern in the CP and meshwork patterns in the IZ/SVZ. Our model demonstrated how the guidance of the tip cell causes a variety of vessel patterns and predicted how tissue-specific vascular formation was regulated in the early development of neocortical vessels.
发育中的新皮质脉管系统在各层呈现出独特的模式。在小鼠胚胎中,皮质板(CP)中的血管垂直排列,而中间区(IZ)和脑室下区(SVZ)中的血管则形成蜂窝状结构。组织特异性血管的形成表明,内皮细胞的行为在各层受到特定的调控机制支配,尽管其中涉及的机制尚不清楚。在本研究中,我们旨在通过使用计算模型进行模拟来探索形成这些血管模式所需的条件。我们开发了一个描述内皮细胞集体迁移的新型模型框架来代表血管生成过程,并使用二维近似进行了模拟。基于VEGF和Unc配体等导向分子的功能和分布,将尖端细胞的吸引和排斥导向纳入模型。结果表明,导向效应的适当组合可重现CP中的平行直线模式和IZ/SVZ中的网状模式。我们的模型展示了尖端细胞的导向如何导致多种血管模式,并预测了新皮质血管早期发育中组织特异性血管形成是如何被调控的。