MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK.
Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK.
HGG Adv. 2022 Nov 24;4(1):100162. doi: 10.1016/j.xhgg.2022.100162. eCollection 2023 Jan 12.
Diagnosing rare developmental disorders using genome-wide sequencing data commonly necessitates review of multiple plausible candidate variants, often using ontologies of categorical clinical terms. We show that Integrating Multiple Phenotype Resources Optimizes Variant Evaluation in Developmental Disorders (IMPROVE-DD) by incorporating additional classes of data commonly available to clinicians and recorded in health records. In doing so, we quantify the distinct contributions of sex, growth, and development in addition to Human Phenotype Ontology (HPO) terms and demonstrate added value from these readily available information sources. We use likelihood ratios for nominal and quantitative data and propose a classifier for HPO terms in this framework. This Bayesian framework results in more robust diagnoses. Using data systematically collected in the Deciphering Developmental Disorders study, we considered 77 genes with pathogenic/likely pathogenic variants in ≥10 individuals. All genes showed at least a satisfactory prediction by receiver operating characteristic when testing on training data (AUC ≥ 0.6), and HPO terms were the best predictor for the majority of genes, though a minority (13/77) of genes were better predicted by other phenotypic data types. Overall, classifiers based upon multiple integrated phenotypic data sources performed better than those based upon any individual source, and importantly, integrated models produced notably fewer false positives. Finally, we show that IMPROVE-DD models with good predictive performance on cross-validation can be constructed from relatively few individuals. This suggests new strategies for candidate gene prioritization and highlights the value of systematic clinical data collection to support diagnostic programs.
使用全基因组测序数据诊断罕见发育障碍通常需要对多个合理的候选变异进行评估,通常使用分类临床术语的本体论。我们表明,通过纳入临床医生通常可用且记录在健康记录中的其他类别的数据,综合多种表型资源可优化发育障碍中的变异评估(IMPROVE-DD)。通过这样做,我们定量了性别、生长和发育除人类表型本体论(HPO)术语之外的独特贡献,并证明了这些现成信息源的附加值。我们在该框架中使用名义和定量数据的似然比,并提出了 HPO 术语的分类器。这种贝叶斯框架可得出更稳健的诊断结果。使用在解析发育障碍研究中系统收集的数据,我们考虑了 77 个基因,这些基因在≥10 个个体中具有致病性/可能致病性变异。在对训练数据进行测试时,所有基因的接收者操作特性曲线(AUC≥0.6)均至少显示出令人满意的预测,而 HPO 术语是大多数基因的最佳预测指标,尽管少数(13/77)基因被其他表型数据类型更好地预测。总体而言,基于多个综合表型数据源的分类器的性能优于基于任何单个数据源的分类器,重要的是,综合模型产生的假阳性明显减少。最后,我们表明,在交叉验证中具有良好预测性能的 IMPROVE-DD 模型可以由相对较少的个体构建。这表明了候选基因优先级排序的新策略,并突出了系统临床数据收集对支持诊断计划的价值。