Kumari Raman, Kumar Rahul, Singh V N
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
Indian Reference Materials (BND) Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012, India.
Heliyon. 2022 Dec 5;8(12):e12043. doi: 10.1016/j.heliyon.2022.e12043. eCollection 2022 Dec.
This theoretical investigation's primary goal is to investigate how the SbSe solar cell's performance may be improved. Here, SnTe, as an innovative back surface field (BSF) layer, has been added between the rear contact (Mo) and absorber layer (SbSe). Above the absorber layer, the structure comprises a thin CdS buffer layer. For each layer of the Al/CdS/SbSe/SnTe/Mo structure, the physical characteristics such as the active layer's thicknesses, carrier concentration, defect density, and rear electrode's work function are determined. The suggested cell outperformed the solar cell without the SnTe layer, which had an efficiency of 20.33%, with enhanced efficiency and open-circuit voltage (Voc) of 28.25% and 0.86 V, respectively, at 300 K. The above solar cell used 0.15 μm SnTe layer, 0.05 μm CdS, and 2.0 μm SbSe layer. The features of the antimony selenide (SbSe) based solar structure is examined using the SCAPS-1D software, which simulates solar cells in one dimension. Investigations have also been done into how working temperatures influence the I-V parameters of the structure.
这项理论研究的主要目标是探究如何提高锑硒(SbSe)太阳能电池的性能。在此,碲化锡(SnTe)作为一种创新的背表面场(BSF)层,被添加在背接触(钼,Mo)和吸收层(SbSe)之间。在吸收层之上,该结构包含一层薄的硫化镉(CdS)缓冲层。对于铝/硫化镉/锑硒/碲化锡/钼(Al/CdS/SbSe/SnTe/Mo)结构的每一层,确定了诸如有源层厚度、载流子浓度、缺陷密度和背电极功函数等物理特性。所提出的电池在300 K时效率提高至28.25%,开路电压(Voc)为0.86 V,优于不含SnTe层、效率为20.33%的太阳能电池。上述太阳能电池使用了0.15μm的SnTe层、0.05μm的CdS层和2.0μm的SbSe层。基于硒化锑(SbSe)的太阳能结构的特性使用SCAPS - 1D软件进行了研究,该软件可在一维上模拟太阳能电池。还研究了工作温度如何影响该结构的电流 - 电压(I - V)参数。