Suppr超能文献

使用SCAPS-1D对具有Si背表面场的ZnSnN太阳能电池进行性能评估:一项理论研究。

Performance evaluation of ZnSnN solar cells with Si back surface field using SCAPS-1D: A theoretical study.

作者信息

Laidouci Abdelmoumene, Singh V N, Dakua Pratap Kumar, Panda Deepak Kumar

机构信息

Faculty of Sciences, University of Blida 1, 09000, Blida, Algeria.

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.

出版信息

Heliyon. 2023 Oct 2;9(10):e20601. doi: 10.1016/j.heliyon.2023.e20601. eCollection 2023 Oct.

Abstract

The earth-abundant semiconductor zinc tin nitride (ZnSnN) has garnered significant attention as a prospective material in photovoltaic and lighting applications, primarily due to its tunable narrow bandgap and high absorption coefficient. This study focuses on a numerical investigation of ZnSnN solar cell structures using the SCAPS 1-D software. The objective is to analyze the influence of various physical and geometrical parameters on solar cell performance. These parameters include the thicknesses of the ZnO window layer, CdS buffer layer, ZnSnN absorber layer, and Si back surface field layer (BSF), as well as operating temperature, series and shunt resistances (R and R), absorber layer defect density, interface defects, and the generation-recombination profile of the n-ZnO:Al/n-CdS/p-ZnSnN/p-Si/Mo structure. We have evaluated the capabilities of this novel material absorber by investigating its performance across a range of thicknesses. We have started with ultrathin absorber thicknesses and gradually increased them to thicker levels to determine the optimal thickness for achieving high efficiency. Under optimal conditions, a thin solar cell with a thickness (w) of 1 μm achieved an efficiency (η) of 23.9%. In a practical solar cell operating at room temperature, optimal parameters were observed with a thicker absorber layer (w = 8 μm) and a BSF width of 0.3 μm. The cell exhibited resistances of R = 10 Ω cm and R = 1 Ω cm, along with a low defect density (N = 10 cm) in the ZnSnN semiconductor. These factors combined to yield an impressive efficiency of 29.5%. Numerous studies on emerging ternary nitride semiconductors (Zn-IV-N) have highlighted ZnSnN as a promising material for thin-film photovoltaics. This compound is appealing due to its abundance, non-toxicity, and cost-effectiveness. Unlike conventional solar cells that depend on rare, toxic, and costly elements, these components are still essential for today's solar cell technology.

摘要

地球上储量丰富的半导体氮化锌锡(ZnSnN)作为光伏和照明应用中的一种潜在材料,已引起了广泛关注,这主要归因于其可调谐的窄带隙和高吸收系数。本研究聚焦于使用SCAPS 1-D软件对ZnSnN太阳能电池结构进行数值研究。目的是分析各种物理和几何参数对太阳能电池性能的影响。这些参数包括ZnO窗口层、CdS缓冲层、ZnSnN吸收层和Si背表面场层(BSF)的厚度,以及工作温度、串联和并联电阻(R和R)、吸收层缺陷密度、界面缺陷,以及n-ZnO:Al/n-CdS/p-ZnSnN/p-Si/Mo结构的产生-复合分布。我们通过研究其在一系列厚度范围内的性能,评估了这种新型材料吸收体的能力。我们从超薄吸收体厚度开始,逐渐增加到更厚的水平,以确定实现高效率的最佳厚度。在最佳条件下,厚度(w)为1μm的薄太阳能电池实现了23.9%的效率(η)。在室温下运行的实际太阳能电池中,观察到在吸收层较厚(w = 8μm)且BSF宽度为0.3μm时的最佳参数。该电池的电阻为R = 10Ω·cm²和R = 1Ω·cm²,同时ZnSnN半导体中的缺陷密度较低(N = 10¹⁵cm⁻³)。这些因素共同作用,产生了令人印象深刻的29.5%的效率。许多关于新兴三元氮化物半导体(Zn-IV-N)的研究都强调了ZnSnN作为薄膜光伏的一种有前途的材料。这种化合物因其丰富性、无毒性和成本效益而具有吸引力。与依赖稀有、有毒且昂贵元素的传统太阳能电池不同,这些成分对于当今的太阳能电池技术仍然至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88bf/10568353/bebb2a993e95/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验