Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
Neuro Oncol. 2023 Jun 2;25(6):1157-1165. doi: 10.1093/neuonc/noac280.
Prognostic models for spinal cord astrocytoma patients are lacking due to the low incidence of the disease. Here, we aim to develop a fully automated deep learning (DL) pipeline for stratified overall survival (OS) prediction based on preoperative MR images.
A total of 587 patients diagnosed with intramedullary tumors were retrospectively enrolled in our hospital to develop an automated pipeline for tumor segmentation and OS prediction. The automated pipeline included a T2WI-based tumor segmentation model and 3 cascaded binary OS prediction models (1-year, 3-year, and 5-year models). For the tumor segmentation model, 439 cases of intramedullary tumors were used to model training and testing using a transfer learning strategy. A total of 138 patients diagnosed with astrocytomas were included to train and test the OS prediction models via 10 × 10-fold cross-validation using CNNs.
The dice of the tumor segmentation model with the test set was 0.852. The results indicated that the best input of OS prediction models was a combination of T2W and T1C images and the tumor mask. The 1-year, 3-year, and 5-year automated OS prediction models achieved accuracies of 86.0%, 84.0%, and 88.0% and AUCs of 0.881 (95% CI 0.839-0.918), 0.862 (95% CI 0.827-0.901), and 0.905 (95% CI 0.867-0.942), respectively. The automated DL pipeline achieved 4-class OS prediction (<1 year, 1-3 years, 3-5 years, and >5 years) with 75.3% accuracy.
We proposed an automated DL pipeline for segmenting spinal cord astrocytomas and stratifying OS based on preoperative MR images.
由于脊髓星形细胞瘤的发病率较低,因此缺乏针对该疾病患者的预后模型。在这里,我们旨在开发一种基于术前磁共振成像的完全自动化深度学习(DL)管道,用于分层总生存(OS)预测。
我们回顾性地招募了 587 名被诊断为髓内肿瘤的患者,以开发用于肿瘤分割和 OS 预测的自动化管道。自动化管道包括基于 T2WI 的肿瘤分割模型和 3 个级联的二进制 OS 预测模型(1 年,3 年和 5 年模型)。对于肿瘤分割模型,使用转移学习策略对 439 例髓内肿瘤进行模型训练和测试。通过使用 CNN 进行 10×10 折交叉验证,共纳入 138 名星形细胞瘤患者来训练和测试 OS 预测模型。
肿瘤分割模型的测试集的 Dice 为 0.852。结果表明,OS 预测模型的最佳输入是 T2W 和 T1C 图像以及肿瘤掩模的组合。1 年,3 年和 5 年的自动 OS 预测模型的准确率分别为 86.0%,84.0%和 88.0%,AUC 分别为 0.881(95%CI 0.839-0.918),0.862(95%CI 0.827-0.901)和 0.905(95%CI 0.867-0.942)。自动 DL 管道实现了 4 类 OS 预测(<1 年,1-3 年,3-5 年和>5 年),准确率为 75.3%。
我们提出了一种基于术前磁共振成像的自动 DL 管道,用于分割脊髓星形细胞瘤并分层 OS。