Suppr超能文献

基于术前磁共振(MR)图像的深度学习可提高原发性脊髓星形细胞瘤生存模型的预测能力。

Deep learning based on preoperative magnetic resonance (MR) images improves the predictive power of survival models in primary spinal cord astrocytomas.

机构信息

Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.

Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.

出版信息

Neuro Oncol. 2023 Jun 2;25(6):1157-1165. doi: 10.1093/neuonc/noac280.

Abstract

BACKGROUND

Prognostic models for spinal cord astrocytoma patients are lacking due to the low incidence of the disease. Here, we aim to develop a fully automated deep learning (DL) pipeline for stratified overall survival (OS) prediction based on preoperative MR images.

METHODS

A total of 587 patients diagnosed with intramedullary tumors were retrospectively enrolled in our hospital to develop an automated pipeline for tumor segmentation and OS prediction. The automated pipeline included a T2WI-based tumor segmentation model and 3 cascaded binary OS prediction models (1-year, 3-year, and 5-year models). For the tumor segmentation model, 439 cases of intramedullary tumors were used to model training and testing using a transfer learning strategy. A total of 138 patients diagnosed with astrocytomas were included to train and test the OS prediction models via 10 × 10-fold cross-validation using CNNs.

RESULTS

The dice of the tumor segmentation model with the test set was 0.852. The results indicated that the best input of OS prediction models was a combination of T2W and T1C images and the tumor mask. The 1-year, 3-year, and 5-year automated OS prediction models achieved accuracies of 86.0%, 84.0%, and 88.0% and AUCs of 0.881 (95% CI 0.839-0.918), 0.862 (95% CI 0.827-0.901), and 0.905 (95% CI 0.867-0.942), respectively. The automated DL pipeline achieved 4-class OS prediction (<1 year, 1-3 years, 3-5 years, and >5 years) with 75.3% accuracy.

CONCLUSIONS

We proposed an automated DL pipeline for segmenting spinal cord astrocytomas and stratifying OS based on preoperative MR images.

摘要

背景

由于脊髓星形细胞瘤的发病率较低,因此缺乏针对该疾病患者的预后模型。在这里,我们旨在开发一种基于术前磁共振成像的完全自动化深度学习(DL)管道,用于分层总生存(OS)预测。

方法

我们回顾性地招募了 587 名被诊断为髓内肿瘤的患者,以开发用于肿瘤分割和 OS 预测的自动化管道。自动化管道包括基于 T2WI 的肿瘤分割模型和 3 个级联的二进制 OS 预测模型(1 年,3 年和 5 年模型)。对于肿瘤分割模型,使用转移学习策略对 439 例髓内肿瘤进行模型训练和测试。通过使用 CNN 进行 10×10 折交叉验证,共纳入 138 名星形细胞瘤患者来训练和测试 OS 预测模型。

结果

肿瘤分割模型的测试集的 Dice 为 0.852。结果表明,OS 预测模型的最佳输入是 T2W 和 T1C 图像以及肿瘤掩模的组合。1 年,3 年和 5 年的自动 OS 预测模型的准确率分别为 86.0%,84.0%和 88.0%,AUC 分别为 0.881(95%CI 0.839-0.918),0.862(95%CI 0.827-0.901)和 0.905(95%CI 0.867-0.942)。自动 DL 管道实现了 4 类 OS 预测(<1 年,1-3 年,3-5 年和>5 年),准确率为 75.3%。

结论

我们提出了一种基于术前磁共振成像的自动 DL 管道,用于分割脊髓星形细胞瘤并分层 OS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验