State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China.
Adv Mater. 2023 Mar;35(9):e2211159. doi: 10.1002/adma.202211159. Epub 2023 Jan 3.
Recording brain neural signals and optogenetic neuromodulations open frontiers in decoding brain neural information and neurodegenerative disease therapeutics. Conventional implantable probes suffer from modulus mismatch with biological tissues and an irreconcilable tradeoff between transparency and electron conductivity. Herein, a strategy is proposed to address these tradeoffs, which generates conductive and transparent hydrogels with polypyrrole-decorated microgels as cross-linkers. The optical transparency of the electrodes can be attributed to the special structures that allow light waves to bypass the microgel particles and minimize their interaction. Demonstrated by probing the hippocampus of rat brains, the biomimetic electrode shows a prolonged capacity for simultaneous optogenetic neuromodulation and recording of brain neural signals. More importantly, an intriguing brain-machine interaction is realized, which involves signal input to the brain, brain neural signal generation, and controlling limb behaviors. This breakthrough work represents a significant scientific advancement toward decoding brain neural information and developing neurodegenerative disease therapies.
记录大脑神经信号和光遗传学神经调节为解码大脑神经信息和神经退行性疾病治疗开辟了新的领域。传统的可植入探针与生物组织存在模量不匹配的问题,而且透明度和电子导电性之间存在不可调和的折衷。本文提出了一种策略来解决这些折衷问题,该策略生成了具有聚吡咯修饰的微凝胶作为交联剂的导电透明水凝胶。电极的光学透明度归因于特殊结构,允许光波绕过微凝胶颗粒并最小化它们的相互作用。通过探测大鼠大脑的海马体证明,仿生电极具有长时间同时进行光遗传学神经调节和大脑神经信号记录的能力。更重要的是,实现了一种有趣的脑机交互,其中涉及到向大脑输入信号、产生大脑神经信号和控制肢体行为。这项突破性工作代表着在解码大脑神经信息和开发神经退行性疾病治疗方法方面取得了重大科学进展。