Suppr超能文献

评估和去除微生物组数据中不必要的技术变异的影响。

Assessing and removing the effect of unwanted technical variations in microbiome data.

机构信息

Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.

Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia.

出版信息

Sci Rep. 2022 Dec 23;12(1):22236. doi: 10.1038/s41598-022-26141-x.

Abstract

Varying technologies and experimental approaches used in microbiome studies often lead to irreproducible results due to unwanted technical variations. Such variations, often unaccounted for and of unknown source, may interfere with true biological signals, resulting in misleading biological conclusions. In this work, we aim to characterize the major sources of technical variations in microbiome data and demonstrate how in-silico approaches can minimize their impact. We analyzed 184 pig faecal metagenomes encompassing 21 specific combinations of deliberately introduced factors of technical and biological variations. Using the novel Removing Unwanted Variations-III-Negative Binomial (RUV-III-NB), we identified several known experimental factors, specifically storage conditions and freeze-thaw cycles, as likely major sources of unwanted variation in metagenomes. We also observed that these unwanted technical variations do not affect taxa uniformly, with freezing samples affecting taxa of class Bacteroidia the most, for example. Additionally, we benchmarked the performances of different correction methods, including ComBat, ComBat-seq, RUVg, RUVs, and RUV-III-NB. While RUV-III-NB performed consistently robust across our sensitivity and specificity metrics, most other methods did not remove unwanted variations optimally. Our analyses suggest that a careful consideration of possible technical confounders is critical during experimental design of microbiome studies, and that the inclusion of technical replicates is necessary to efficiently remove unwanted variations computationally.

摘要

由于技术变异的存在,不同的微生物组研究技术和实验方法常常导致结果不可重现。这些变异通常是未被考虑到的,而且来源未知,可能会干扰真实的生物学信号,导致误导性的生物学结论。在这项工作中,我们旨在描述微生物组数据中技术变异的主要来源,并展示计算方法如何最小化其影响。我们分析了 184 个猪粪便宏基因组,其中包含 21 种特定的技术和生物变异引入因素的组合。使用新颖的去除不必要的变异-III-负二项式(RUV-III-NB),我们确定了几个已知的实验因素,特别是存储条件和冻融循环,是宏基因组中不必要变异的主要来源。我们还观察到,这些不必要的技术变异不会均匀地影响分类群,例如,冷冻样本对 Bacteroidia 类的分类群影响最大。此外,我们还对不同的校正方法的性能进行了基准测试,包括 ComBat、ComBat-seq、RUVg、RUVs 和 RUV-III-NB。虽然 RUV-III-NB 在我们的敏感性和特异性指标中表现一致稳健,但大多数其他方法并没有最优地去除不必要的变异。我们的分析表明,在微生物组研究的实验设计中,仔细考虑可能的技术混杂因素至关重要,并且需要包含技术重复以有效地计算去除不必要的变异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bd3/9789116/5b6666daaf78/41598_2022_26141_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验