Suppr超能文献

鉴定人类微生物组研究中的偏差及其潜在解决方案。

Identifying biases and their potential solutions in human microbiome studies.

机构信息

Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.

Integrated Microbiome Resource, Dalhousie University, Halifax, Nova Scotia, Canada.

出版信息

Microbiome. 2021 May 18;9(1):113. doi: 10.1186/s40168-021-01059-0.

Abstract

Advances in DNA sequencing technology have vastly improved the ability of researchers to explore the microbial inhabitants of the human body. Unfortunately, while these studies have uncovered the importance of these microbial communities to our health, they often do not result in similar findings. One possible reason for the disagreement in these results is due to the multitude of systemic biases that are introduced during sequence-based microbiome studies. These biases begin with sample collection and continue to be introduced throughout the entire experiment leading to an observed community that is significantly altered from the true underlying microbial composition. In this review, we will highlight the various steps in typical sequence-based human microbiome studies where significant bias can be introduced, and we will review the current efforts within the field that aim to reduce the impact of these biases. Video abstract.

摘要

DNA 测序技术的进步极大地提高了研究人员探索人体微生物栖息者的能力。不幸的是,尽管这些研究揭示了这些微生物群落对我们健康的重要性,但它们通常不会产生类似的发现。这些结果存在分歧的一个可能原因是,在基于序列的微生物组研究中引入了多种系统性偏差。这些偏差始于样本收集,并在整个实验过程中不断引入,导致观察到的群落与真实的潜在微生物组成有显著差异。在这篇综述中,我们将重点介绍典型的基于序列的人类微生物组研究中可能引入显著偏差的各个步骤,并回顾该领域目前旨在减少这些偏差影响的努力。视频摘要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验