Sun Jiawei, Wu Bobo, Zhao Tong, Gao Liugang, Xie Kai, Lin Tao, Sui Jianfeng, Li Xiaoqin, Wu Xiaojin, Ni Xinye
The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213003, China; Center of Medical Physics, Nanjing Medical University, Changzhou 213003, China.
The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China.
Comput Biol Med. 2023 Jan;152:106444. doi: 10.1016/j.compbiomed.2022.106444. Epub 2022 Dec 16.
The lack of representative features between benign nodules, especially level 3 of Thyroid Imaging Reporting and Data System (TI-RADS), and malignant nodules limits diagnostic accuracy, leading to inconsistent interpretation, overdiagnosis, and unnecessary biopsies. We propose a Vision-Transformer-based (ViT) thyroid nodule classification model using contrast learning, called TC-ViT, to improve accuracy of diagnosis and specificity of biopsy recommendations. ViT can explore the global features of thyroid nodules well. Nodule images are used as ROI to enhance the local features of the ViT. Contrast learning can minimize the representation distance between nodules of the same category, enhance the representation consistency of global and local features, and achieve accurate diagnosis of TI-RADS 3 or malignant nodules. The test results achieve an accuracy of 86.9%. The evaluation metrics show that the network outperforms other classical deep learning-based networks in terms of classification performance. TC-ViT can achieve automatic classification of TI-RADS 3 and malignant nodules on ultrasound images. It can also be used as a key step in computer-aided diagnosis for comprehensive analysis and accurate diagnosis. The code will be available at https://github.com/Jiawei217/TC-ViT.
良性结节之间缺乏代表性特征,尤其是甲状腺影像报告和数据系统(TI-RADS)的3类结节与恶性结节之间缺乏代表性特征,这限制了诊断准确性,导致解读不一致、过度诊断和不必要的活检。我们提出了一种基于视觉Transformer(ViT)的甲状腺结节分类模型,使用对比学习,称为TC-ViT,以提高诊断准确性和活检建议的特异性。ViT能够很好地探索甲状腺结节的全局特征。结节图像用作感兴趣区域(ROI)以增强ViT的局部特征。对比学习可以最小化同一类结节之间的表征距离,增强全局和局部特征的表征一致性,并实现对TI-RADS 3类或恶性结节的准确诊断。测试结果的准确率达到86.9%。评估指标表明,该网络在分类性能方面优于其他基于深度学习的经典网络。TC-ViT能够在超声图像上实现TI-RADS 3类和恶性结节的自动分类。它还可以用作计算机辅助诊断中进行综合分析和准确诊断的关键步骤。代码将在https://github.com/Jiawei217/TC-ViT上提供。