Cece Alessio, Agresti Massimo, De Falco Nadia, Sperlongano Pasquale, Moccia Giancarlo, Luongo Pasquale, Miele Francesco, Allaria Alfredo, Torelli Francesco, Bassi Paola, Sciarra Antonella, Avenia Stefano, Della Monica Paola, Colapietra Federica, Di Domenico Marina, Docimo Ludovico, Parmeggiani Domenico
Department of Integrated Activities in Surgery, Orthopedy and Hepato-Gastroenterology, Universitary Policlinico "Luigi Vanvitelli", 80138 Naples, Italy.
Department of Medicine and Surgery, University of Perugia, 06126 Perugia, Italy.
J Clin Med. 2025 Apr 2;14(7):2422. doi: 10.3390/jcm14072422.
The progress of artificial intelligence (AI), particularly its core algorithms-machine learning (ML) and deep learning (DL)-has been significant in the medical field, impacting both scientific research and clinical practice. These algorithms are now capable of analyzing ultrasound images, processing them, and providing outcomes, such as determining the benignity or malignancy of thyroid nodules. This integration into ultrasound machines is referred to as computer-aided diagnosis (CAD). The use of such software extends beyond ultrasound to include cytopathological and molecular assessments, enhancing the estimation of malignancy risk. AI's considerable potential in cancer diagnosis and prevention is evident. This article provides an overview of AI models based on ML and DL algorithms used in thyroid diagnostics. Recent studies demonstrate their effectiveness and diagnostic role in ultrasound, pathology, and molecular fields. Notable advancements include content-based image retrieval (CBIR), enhanced saliency CBIR (SE-CBIR), Restore-Generative Adversarial Networks (GANs), and Vision Transformers (ViTs). These new algorithms show remarkable results, indicating their potential as diagnostic and prognostic tools for thyroid pathology. The future trend points to these AI systems becoming the preferred choice for thyroid diagnostics.
人工智能(AI)的发展,尤其是其核心算法——机器学习(ML)和深度学习(DL)——在医学领域取得了显著进展,对科研和临床实践都产生了影响。这些算法现在能够分析超声图像、对其进行处理并给出结果,比如确定甲状腺结节的良恶性。这种集成到超声设备中的应用被称为计算机辅助诊断(CAD)。此类软件的应用范围不仅限于超声,还包括细胞病理学和分子评估,提高了对恶性风险的评估。人工智能在癌症诊断和预防方面的巨大潜力显而易见。本文概述了基于机器学习和深度学习算法的人工智能模型在甲状腺诊断中的应用。最近的研究证明了它们在超声、病理学和分子领域的有效性及诊断作用。显著进展包括基于内容的图像检索(CBIR)、增强显著性CBIR(SE-CBIR)、Restore-生成对抗网络(GANs)和视觉Transformer(ViTs)。这些新算法显示出显著成果,表明它们作为甲状腺病理学诊断和预后工具的潜力。未来趋势表明,这些人工智能系统将成为甲状腺诊断的首选。