UAB Lung Imaging Core.
UAB Lung Health Center.
JCI Insight. 2020 Jul 9;5(13):132781. doi: 10.1172/jci.insight.132781.
BACKGROUNDCurrently recommended traditional spirometry outputs do not reflect the relative contributions of emphysema and airway disease to airflow obstruction. We hypothesized that machine-learning algorithms can be trained on spirometry data to identify these structural phenotypes.METHODSParticipants enrolled in a large multicenter study (COPDGene) were included. The data points from expiratory flow-volume curves were trained using a deep-learning model to predict structural phenotypes of chronic obstructive pulmonary disease (COPD) on CT, and results were compared with traditional spirometry metrics and an optimized random forest classifier. Area under the receiver operating characteristic curve (AUC) and weighted F-score were used to measure the discriminative accuracy of a fully convolutional neural network, random forest, and traditional spirometry metrics to phenotype CT as normal, emphysema-predominant (>5% emphysema), airway-predominant (Pi10 > median), and mixed phenotypes. Similar comparisons were made for the detection of functional small airway disease phenotype (>20% on parametric response mapping).RESULTSAmong 8980 individuals, the neural network was more accurate in discriminating predominant emphysema/airway phenotypes (AUC 0.80, 95%CI 0.79-0.81) compared with traditional measures of spirometry, FEV1/FVC (AUC 0.71, 95%CI 0.69-0.71), FEV1% predicted (AUC 0.70, 95%CI 0.68-0.71), and random forest classifier (AUC 0.78, 95%CI 0.77-0.79). The neural network was also more accurate in discriminating predominant emphysema/small airway phenotypes (AUC 0.91, 95%CI 0.90-0.92) compared with FEV1/FVC (AUC 0.80, 95%CI 0.78-0.82), FEV1% predicted (AUC 0.83, 95%CI 0.80-0.84), and with comparable accuracy with random forest classifier (AUC 0.90, 95%CI 0.88-0.91).CONCLUSIONSStructural phenotypes of COPD can be identified from spirometry using deep-learning and machine-learning approaches, demonstrating their potential to identify individuals for targeted therapies.TRIAL REGISTRATIONClinicalTrials.gov NCT00608764.FUNDINGThis study was supported by NIH grants K23 HL133438 and R21EB027891 and an American Thoracic Foundation 2018 Unrestricted Research Grant. The COPDGene study is supported by NIH grants NHLBI U01 HL089897 and U01 HL089856. The COPDGene study (NCT00608764) is also supported by the COPD Foundation through contributions made to an Industry Advisory Committee comprising AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Novartis, and Sunovion.
目前推荐的传统肺量计检测结果不能反映肺气肿和气道疾病对气流阻塞的相对贡献。我们假设机器学习算法可以通过肺量计数据进行训练,以识别这些结构性表型。
纳入了一项大型多中心研究(COPDGene)的参与者。使用深度学习模型对呼气流量-容积曲线的数据点进行训练,以预测 CT 上的慢性阻塞性肺疾病(COPD)结构性表型,并将结果与传统肺量计指标和优化的随机森林分类器进行比较。接受者操作特征曲线下的面积(AUC)和加权 F 分数用于衡量全卷积神经网络、随机森林和传统肺量计指标对 CT 正常、肺气肿占优势(>5%肺气肿)、气道占优势(Pi10>中位数)和混合表型的区分准确性。还对功能性小气道疾病表型(参数反应映射>20%)的检测进行了类似的比较。
在 8980 名个体中,神经网络在区分主要肺气肿/气道表型方面比传统的肺量计指标(FEV1/FVC、FEV1%预测值)更准确,AUC 分别为 0.80(95%CI 0.79-0.81)、0.71(95%CI 0.69-0.71)、0.70(95%CI 0.68-0.71)和随机森林分类器(AUC 0.78,95%CI 0.77-0.79)。神经网络在区分主要肺气肿/小气道表型方面也更准确,AUC 为 0.91(95%CI 0.90-0.92),与 FEV1/FVC(AUC 0.80,95%CI 0.78-0.82)、FEV1%预测值(AUC 0.83,95%CI 0.80-0.84)相当,与随机森林分类器的准确性相当(AUC 0.90,95%CI 0.88-0.91)。
使用深度学习和机器学习方法可以从肺量计中识别 COPD 的结构性表型,这表明它们有可能识别出需要靶向治疗的个体。
ClinicalTrials.gov NCT00608764。
本研究由美国国立卫生研究院(NIH)K23HL133438 和 R21HL133438 以及美国胸科学会 2018 年不受限制的研究赠款资助。COPDGene 研究由 NIH 授予 NHLBI U01HL089897 和 U01HL089856 资助。COPDGene 研究(NCT00608764)还得到了 COPD 基金会的支持,该基金会通过向由阿斯利康、勃林格殷格翰、葛兰素史克、诺华和山德士组成的行业咨询委员会做出贡献来提供支持。