Suppr超能文献

内线粒体膜的密度如何影响线粒体的性能?

How does density of the inner mitochondrial membrane influence mitochondrial performance?

机构信息

Department of Biological Sciences, Auburn University, Auburn, Alabama.

National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2023 Feb 1;324(2):R242-R248. doi: 10.1152/ajpregu.00254.2022. Epub 2022 Dec 26.

Abstract

Our current understanding of variation in mitochondrial performance is incomplete. The production of ATP via oxidative phosphorylation is dependent, in part, on the structure of the inner mitochondrial membrane. Morphology of the inner membrane is crucial for the formation of the proton gradient across the inner membrane and, therefore, ATP synthesis. The inner mitochondrial membrane is dynamic, changing shape and surface area. These changes alter density (amount per volume) of the inner mitochondrial membrane within the confined space of the mitochondrion. Because the number of electron transport system proteins within the inner mitochondrial membrane changes with inner mitochondrial membrane area, a change in the amount of inner membrane alters the capacity for ATP production within the organelle. This review outlines the evidence that the association between ATP synthases, inner mitochondrial membrane density, and mitochondrial density (number of mitochondria per cell) impacts ATP production by mitochondria. Furthermore, we consider possible constraints on the capacity of mitochondria to produce ATP by increasing inner mitochondrial membrane density.

摘要

目前,我们对于线粒体功能变化的理解并不完整。通过氧化磷酸化产生 ATP,部分依赖于线粒体内膜的结构。内膜的形态对于质子梯度的形成至关重要,而质子梯度的形成则是 ATP 合成的关键。线粒体内膜是动态的,其形状和表面积会发生变化。这些变化改变了线粒体内有限空间内的内膜密度(单位体积内的数量)。由于线粒体内膜中的电子传递系统蛋白数量随内膜面积的变化而变化,因此内膜数量的变化会改变细胞器内 ATP 产生的能力。这篇综述概述了证据表明,ATP 合酶、线粒体内膜密度和线粒体密度(每个细胞中的线粒体数量)之间的关联会影响线粒体的 ATP 产生。此外,我们还考虑了通过增加线粒体内膜密度来提高线粒体产生 ATP 能力的可能限制。

相似文献

1
How does density of the inner mitochondrial membrane influence mitochondrial performance?
Am J Physiol Regul Integr Comp Physiol. 2023 Feb 1;324(2):R242-R248. doi: 10.1152/ajpregu.00254.2022. Epub 2022 Dec 26.
2
Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes.
Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2412-2421. doi: 10.1073/pnas.1917968117. Epub 2020 Jan 21.
3
Who and how in the regulation of mitochondrial cristae shape and function.
Biochem Biophys Res Commun. 2018 May 27;500(1):94-101. doi: 10.1016/j.bbrc.2017.04.088. Epub 2017 Apr 21.
4
Biophysical significance of the inner mitochondrial membrane structure on the electrochemical potential of mitochondria.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062723. doi: 10.1103/PhysRevE.88.062723. Epub 2013 Dec 27.
5
7
Ordered Clusters of the Complete Oxidative Phosphorylation System in Cardiac Mitochondria.
Int J Mol Sci. 2021 Feb 2;22(3):1462. doi: 10.3390/ijms22031462.
8
Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation.
Biochim Biophys Acta. 2014 Apr;1837(4):418-26. doi: 10.1016/j.bbabio.2013.10.004. Epub 2013 Oct 30.
9
Inner mitochondrial membrane compartmentalization: Dynamics across scales.
Int J Biochem Cell Biol. 2020 Mar;120:105694. doi: 10.1016/j.biocel.2020.105694. Epub 2020 Jan 10.
10
Integration of superoxide formation and cristae morphology for mitochondrial redox signaling.
Int J Biochem Cell Biol. 2016 Nov;80:31-50. doi: 10.1016/j.biocel.2016.09.010. Epub 2016 Sep 15.

引用本文的文献

1
Cardiolipin acyl chain composition tailors the conformation of mammalian ATP synthase dimers.
Commun Chem. 2025 Jul 30;8(1):220. doi: 10.1038/s42004-025-01611-1.
4
Stem-cell-derived beta cells mature metabolically upon murine engraftment.
Diabetologia. 2025 Jul 2. doi: 10.1007/s00125-025-06474-8.
6
How the Topology of the Mitochondrial Inner Membrane Modulates ATP Production.
Cells. 2025 Feb 11;14(4):257. doi: 10.3390/cells14040257.
7
Photothermal imaging of cellular responses to glucose deprivation.
RSC Chem Biol. 2025 Jan 31;6(4):571-582. doi: 10.1039/d4cb00269e. eCollection 2025 Apr 2.
8
Ferroptosis in Cardiovascular Diseases and Ferroptosis-Related Intervention Approaches.
Cardiovasc Drugs Ther. 2024 Dec 6. doi: 10.1007/s10557-024-07642-5.
9
Heterogeneous distribution of mitochondria and succinate dehydrogenase activity in human airway smooth muscle cells.
FASEB Bioadv. 2024 May 28;6(6):159-176. doi: 10.1096/fba.2024-00047. eCollection 2024 Jun.
10
Alcohol Triggers the Accumulation of Oxidatively Damaged Proteins in Neuronal Cells and Tissues.
Antioxidants (Basel). 2024 May 8;13(5):580. doi: 10.3390/antiox13050580.

本文引用的文献

1
Subcellular Specialization of Mitochondrial Form and Function in Skeletal Muscle Cells.
Front Cell Dev Biol. 2021 Oct 15;9:757305. doi: 10.3389/fcell.2021.757305. eCollection 2021.
2
An in vitro system to silence mitochondrial gene expression.
Cell. 2021 Nov 11;184(23):5824-5837.e15. doi: 10.1016/j.cell.2021.09.033. Epub 2021 Oct 20.
3
Effect of crista morphology on mitochondrial ATP output: A computational study.
Curr Res Physiol. 2021;4:163-176. doi: 10.1016/j.crphys.2021.03.005. Epub 2021 Apr 1.
4
ATF5, a putative therapeutic target for the mitochondrial DNA 3243A > G mutation-related disease.
Cell Death Dis. 2021 Jul 14;12(7):701. doi: 10.1038/s41419-021-03993-1.
5
Emerging Roles of the MICOS Complex in Cristae Dynamics and Biogenesis.
Biology (Basel). 2021 Jun 29;10(7):600. doi: 10.3390/biology10070600.
6
Mitochondrial Cristae Architecture and Functions: Lessons from Minimal Model Systems.
Membranes (Basel). 2021 Jun 23;11(7):465. doi: 10.3390/membranes11070465.
7
Mitochondrial quality control: from molecule to organelle.
Cell Mol Life Sci. 2021 Apr;78(8):3853-3866. doi: 10.1007/s00018-021-03775-0. Epub 2021 Mar 29.
8
Opa1 relies on cristae preservation and ATP synthase to curtail reactive oxygen species accumulation in mitochondria.
Redox Biol. 2021 May;41:101944. doi: 10.1016/j.redox.2021.101944. Epub 2021 Mar 19.
9
Energy metabolism design of the striated muscle cell.
Physiol Rev. 2021 Oct 1;101(4):1561-1607. doi: 10.1152/physrev.00040.2020. Epub 2021 Mar 18.
10
Human skeletal muscle mitochondrial dynamics in relation to oxidative capacity and insulin sensitivity.
Diabetologia. 2021 Feb;64(2):424-436. doi: 10.1007/s00125-020-05335-w. Epub 2020 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验