Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, U.K.
MHP Management- und IT-Beratung GmbH, Königsallee 49, 71638 Ludwigsburg, Germany.
J Phys Chem Lett. 2022 Jan 20;13(2):536-543. doi: 10.1021/acs.jpclett.1c04054. Epub 2022 Jan 10.
We propose a discretization-free approach to simulation of cyclic voltammetry using Physics-Informed Neural Networks (PINNs) by constraining a feed-forward neutral network with the diffusion equation and electrochemically consistent boundary conditions. Using PINNs, we first predict one-dimensional voltammetry at a disc electrode with semi-infinite or thin layer boundary conditions. The voltammograms agree quantitatively with those obtained independently using the finite difference method and/or previously reported analytical expressions. Further, we predict the voltammetry at a microband electrode, solving the two-dimensional diffusion equation, obtaining results in close agreement with the literature. Last, we apply a PINN to voltammetry at the edges of a square electrode, quantifying the nonuniform current distribution near the corner of electrode. In general, we noticed the relative ease of developing PINNs for the solution of, in particular, the higher dimensional problem, and recommend PINNs as a potentially faster and easier alternative to existing approaches for voltammetric problems.
我们提出了一种无离散化方法,通过将前馈神经网络与扩散方程和电化学一致的边界条件相结合,利用物理信息神经网络(PINNs)来模拟循环伏安法。我们首先使用 PINNs 预测具有半无限或薄层边界条件的圆盘电极的一维伏安法。伏安图与使用有限差分法和/或先前报道的解析表达式独立获得的伏安图定量一致。此外,我们预测了微带电极的伏安法,通过求解二维扩散方程,得到了与文献非常吻合的结果。最后,我们将 PINN 应用于方形电极边缘的伏安法,量化了电极拐角附近非均匀电流分布。总的来说,我们注意到为特别是更高维问题的求解开发 PINN 的相对容易性,并推荐 PINNs 作为一种潜在的更快、更简单的替代现有伏安法问题的方法。