Allahabadi Himanshi, Amann Julia, Balot Isabelle, Beretta Andrea, Binkley Charles, Bozenhard Jonas, Bruneault Frederick, Brusseau James, Candemir Sema, Cappellini Luca Alessandro, Chakraborty Subrata, Cherciu Nicoleta, Cociancig Christina, Coffee Megan, Ek Irene, Espinosa-Leal Leonardo, Farina Davide, Fieux-Castagnet Genevieve, Frauenfelder Thomas, Gallucci Alessio, Giuliani Guya, Golda Adam, van Halem Irmhild, Hildt Elisabeth, Holm Sune, Kararigas Georgios, Krier Sebastien A, Kuhne Ulrich, Lizzi Francesca, Madai Vince I, Markus Aniek F, Masis Serg, Mathez Emilie Wiinblad, Mureddu Francesco, Neri Emanuele, Osika Walter, Ozols Matiss, Panigutti Cecilia, Parent Brendan, Pratesi Francesca, Moreno-Sanchez Pedro A, Sartor Giovanni, Savardi Mattia, Signoroni Alberto, Sormunen Hanna-Maria, Spezzatti Andy, Srivastava Adarsh, Stephansen Annette F, Theng Lau Bee, Tithi Jesmin Jahan, Tuominen Jarno, Umbrello Steven, Vaccher Filippo, Vetter Dennis, Westerlund Magnus, Wurth Renee, Zicari Roberto V
Enterprise Intelligence DepartmentEY Netherlands 1083 HP Amsterdam The Netherlands.
Health Ethics and Policy LabDepartment of Health Sciences and TechnologyETH Zurich 8092 Zürich Switzerland.
IEEE Trans Technol Soc. 2022 Jul 29;3(4):272-289. doi: 10.1109/TTS.2022.3195114. eCollection 2022 Dec.
This article's main contributions are twofold: 1) to demonstrate how to apply the general European Union's High-Level Expert Group's (EU HLEG) guidelines for trustworthy AI in practice for the domain of healthcare and 2) to investigate the research question of what does "trustworthy AI" mean at the time of the COVID-19 pandemic. To this end, we present the results of a post-hoc self-assessment to evaluate the trustworthiness of an AI system for predicting a multiregional score conveying the degree of lung compromise in COVID-19 patients, developed and verified by an interdisciplinary team with members from academia, public hospitals, and industry in time of pandemic. The AI system aims to help radiologists to estimate and communicate the severity of damage in a patient's lung from Chest X-rays. It has been experimentally deployed in the radiology department of the ASST Spedali Civili clinic in Brescia, Italy, since December 2020 during pandemic time. The methodology we have applied for our post-hoc assessment, called Z-Inspection®, uses sociotechnical scenarios to identify ethical, technical, and domain-specific issues in the use of the AI system in the context of the pandemic.
1)展示如何在医疗保健领域实际应用欧盟高级别专家组(EU HLEG)关于可信人工智能的指导方针;2)研究在新冠疫情期间“可信人工智能”意味着什么这一研究问题。为此,我们展示了一项事后自我评估的结果,以评估一个用于预测多区域评分的人工智能系统的可信度,该评分传达了新冠患者肺部受损程度,由一个跨学科团队在疫情期间开发并验证,团队成员来自学术界、公立医院和行业。该人工智能系统旨在帮助放射科医生根据胸部X光片评估和传达患者肺部损伤的严重程度。自2020年12月疫情期间起,它已在意大利布雷西亚ASST Spedali Civili诊所的放射科进行了实验性部署。我们用于事后评估的方法称为Z-Inspection®,它使用社会技术场景来识别在疫情背景下使用人工智能系统时的伦理、技术和特定领域问题。