文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

BS-Net: Learning COVID-19 pneumonia severity on a large chest X-ray dataset.

作者信息

Signoroni Alberto, Savardi Mattia, Benini Sergio, Adami Nicola, Leonardi Riccardo, Gibellini Paolo, Vaccher Filippo, Ravanelli Marco, Borghesi Andrea, Maroldi Roberto, Farina Davide

机构信息

Department of Information Engineering, University of Brescia, Brescia, Italy.

Department of Information Engineering, University of Brescia, Brescia, Italy.

出版信息

Med Image Anal. 2021 Jul;71:102046. doi: 10.1016/j.media.2021.102046. Epub 2021 Mar 31.


DOI:10.1016/j.media.2021.102046
PMID:33862337
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8010334/
Abstract

In this work we design an end-to-end deep learning architecture for predicting, on Chest X-rays images (CXR), a multi-regional score conveying the degree of lung compromise in COVID-19 patients. Such semi-quantitative scoring system, namely Brixia score, is applied in serial monitoring of such patients, showing significant prognostic value, in one of the hospitals that experienced one of the highest pandemic peaks in Italy. To solve such a challenging visual task, we adopt a weakly supervised learning strategy structured to handle different tasks (segmentation, spatial alignment, and score estimation) trained with a "from-the-part-to-the-whole" procedure involving different datasets. In particular, we exploit a clinical dataset of almost 5,000 CXR annotated images collected in the same hospital. Our BS-Net demonstrates self-attentive behavior and a high degree of accuracy in all processing stages. Through inter-rater agreement tests and a gold standard comparison, we show that our solution outperforms single human annotators in rating accuracy and consistency, thus supporting the possibility of using this tool in contexts of computer-assisted monitoring. Highly resolved (super-pixel level) explainability maps are also generated, with an original technique, to visually help the understanding of the network activity on the lung areas. We also consider other scores proposed in literature and provide a comparison with a recently proposed non-specific approach. We eventually test the performance robustness of our model on an assorted public COVID-19 dataset, for which we also provide Brixia score annotations, observing good direct generalization and fine-tuning capabilities that highlight the portability of BS-Net in other clinical settings. The CXR dataset along with the source code and the trained model are publicly released for research purposes.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/f15dba44b146/gr11_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/32a696907ba9/fx1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/0500524c75bf/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/14742d8ac1e6/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/6c3450789f8f/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/c7603a07f0aa/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/877d87637923/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/b4f944350003/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/afc7fee39bee/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/564be6bd58e3/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/99cbecb8cc22/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/357382cae764/gr10_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/f15dba44b146/gr11_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/32a696907ba9/fx1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/0500524c75bf/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/14742d8ac1e6/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/6c3450789f8f/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/c7603a07f0aa/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/877d87637923/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/b4f944350003/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/afc7fee39bee/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/564be6bd58e3/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/99cbecb8cc22/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/357382cae764/gr10_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/f15dba44b146/gr11_lrg.jpg

相似文献

[1]
BS-Net: Learning COVID-19 pneumonia severity on a large chest X-ray dataset.

Med Image Anal. 2021-7

[2]
Explainable COVID-19 Detection Based on Chest X-rays Using an End-to-End RegNet Architecture.

Viruses. 2023-6-6

[3]
Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images.

Comput Biol Med. 2021-5

[4]
Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images.

Comput Math Methods Med. 2021

[5]
Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network.

Int J Comput Assist Radiol Surg. 2021-2

[6]
A Cascade-SEME network for COVID-19 detection in chest x-ray images.

Med Phys. 2021-5

[7]
COVID-19 diagnosis from chest X-ray images using transfer learning: Enhanced performance by debiasing dataloader.

J Xray Sci Technol. 2021

[8]
CovXNet: A multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization.

Comput Biol Med. 2020-6-20

[9]
COVID-DSNet: A novel deep convolutional neural network for detection of coronavirus (SARS-CoV-2) cases from CT and Chest X-Ray images.

Artif Intell Med. 2022-12

[10]
POLCOVID: a multicenter multiclass chest X-ray database (Poland, 2020-2021).

Sci Data. 2023-6-2

引用本文的文献

[1]
Differentiation of COVID-19 from other types of viral pneumonia and severity scoring on baseline chest radiographs: Comparison of deep learning with multi-reader evaluation.

PLoS One. 2025-7-29

[2]
Machine Learning Techniques Applied to COVID-19 Prediction: A Systematic Literature Review.

Bioengineering (Basel). 2025-5-13

[3]
Upskilling or deskilling? Measurable role of an AI-supported training for radiology residents: a lesson from the pandemic.

Insights Imaging. 2025-1-29

[4]
CXR-LLaVA: a multimodal large language model for interpreting chest X-ray images.

Eur Radiol. 2025-1-15

[5]
Addressing fairness issues in deep learning-based medical image analysis: a systematic review.

NPJ Digit Med. 2024-10-17

[6]
Exploratory analysis of serum Krebs von den Lungen-6, blood gas analysis & Brixia score in determining COVID-19 severity & mortality.

Indian J Med Res. 2024-5

[7]
Identifying severe community-acquired pneumonia using radiomics and clinical data: a machine learning approach.

Sci Rep. 2024-9-19

[8]
An open-source framework for end-to-end analysis of electronic health record data.

Nat Med. 2024-11

[9]
TransMVAN: Multi-view Aggregation Network with Transformer for Pneumonia Diagnosis.

J Imaging Inform Med. 2025-2

[10]
Reinvestigating the performance of artificial intelligence classification algorithms on COVID-19 X-Ray and CT images.

iScience. 2024-4-10

本文引用的文献

[1]
Leveraging Data Science to Combat COVID-19: A Comprehensive Review.

IEEE Trans Artif Intell. 2020-9-2

[2]
Multi-population generalizability of a deep learning-based chest radiograph severity score for COVID-19.

Medicine (Baltimore). 2022-7-22

[3]
A critic evaluation of methods for COVID-19 automatic detection from X-ray images.

Inf Fusion. 2021-12

[4]
Automated Assessment and Tracking of COVID-19 Pulmonary Disease Severity on Chest Radiographs using Convolutional Siamese Neural Networks.

Radiol Artif Intell. 2020-7-22

[5]
How Might AI and Chest Imaging Help Unravel COVID-19's Mysteries?

Radiol Artif Intell. 2020-5-6

[6]
Towards computer-aided severity assessment via deep neural networks for geographic and opacity extent scoring of SARS-CoV-2 chest X-rays.

Sci Rep. 2021-4-29

[7]
COVID-19: A Multimodality Review of Radiologic Techniques, Clinical Utility, and Imaging Features.

Radiol Cardiothorac Imaging. 2020-6-1

[8]
Serial Quantitative Chest CT Assessment of COVID-19: A Deep Learning Approach.

Radiol Cardiothorac Imaging. 2020-3-30

[9]
COVID-19 in CXR: From Detection and Severity Scoring to Patient Disease Monitoring.

IEEE J Biomed Health Inform. 2021-6

[10]
Machine learning applied on chest x-ray can aid in the diagnosis of COVID-19: a first experience from Lombardy, Italy.

Eur Radiol Exp. 2021-2-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索