Suppr超能文献

BS-Net:在大型胸部X光数据集上学习新冠病毒肺炎的严重程度

BS-Net: Learning COVID-19 pneumonia severity on a large chest X-ray dataset.

作者信息

Signoroni Alberto, Savardi Mattia, Benini Sergio, Adami Nicola, Leonardi Riccardo, Gibellini Paolo, Vaccher Filippo, Ravanelli Marco, Borghesi Andrea, Maroldi Roberto, Farina Davide

机构信息

Department of Information Engineering, University of Brescia, Brescia, Italy.

Department of Information Engineering, University of Brescia, Brescia, Italy.

出版信息

Med Image Anal. 2021 Jul;71:102046. doi: 10.1016/j.media.2021.102046. Epub 2021 Mar 31.

Abstract

In this work we design an end-to-end deep learning architecture for predicting, on Chest X-rays images (CXR), a multi-regional score conveying the degree of lung compromise in COVID-19 patients. Such semi-quantitative scoring system, namely Brixia score, is applied in serial monitoring of such patients, showing significant prognostic value, in one of the hospitals that experienced one of the highest pandemic peaks in Italy. To solve such a challenging visual task, we adopt a weakly supervised learning strategy structured to handle different tasks (segmentation, spatial alignment, and score estimation) trained with a "from-the-part-to-the-whole" procedure involving different datasets. In particular, we exploit a clinical dataset of almost 5,000 CXR annotated images collected in the same hospital. Our BS-Net demonstrates self-attentive behavior and a high degree of accuracy in all processing stages. Through inter-rater agreement tests and a gold standard comparison, we show that our solution outperforms single human annotators in rating accuracy and consistency, thus supporting the possibility of using this tool in contexts of computer-assisted monitoring. Highly resolved (super-pixel level) explainability maps are also generated, with an original technique, to visually help the understanding of the network activity on the lung areas. We also consider other scores proposed in literature and provide a comparison with a recently proposed non-specific approach. We eventually test the performance robustness of our model on an assorted public COVID-19 dataset, for which we also provide Brixia score annotations, observing good direct generalization and fine-tuning capabilities that highlight the portability of BS-Net in other clinical settings. The CXR dataset along with the source code and the trained model are publicly released for research purposes.

摘要

在这项工作中,我们设计了一种端到端的深度学习架构,用于在胸部X光图像(CXR)上预测一个多区域评分,该评分反映了COVID-19患者肺部受损的程度。这种半定量评分系统,即布里夏评分,在意大利疫情高峰期受灾最严重的一家医院中,被应用于此类患者的连续监测,显示出显著的预后价值。为了解决这一具有挑战性的视觉任务,我们采用了一种弱监督学习策略,该策略被构建用于处理不同的任务(分割、空间对齐和评分估计),通过一个涉及不同数据集的“从部分到整体”程序进行训练。特别是,我们利用了在同一家医院收集的近5000张带有标注的CXR临床数据集。我们的BS-Net在所有处理阶段都表现出自我关注行为和高度的准确性。通过评分者间一致性测试和与金标准的比较,我们表明我们的解决方案在评分准确性和一致性方面优于单个人类标注者,从而支持了在计算机辅助监测环境中使用该工具的可能性。我们还使用一种原创技术生成了高分辨率(超像素级)的可解释性映射,以直观地帮助理解网络在肺部区域的活动。我们还考虑了文献中提出的其他评分,并与最近提出的一种非特异性方法进行了比较。我们最终在一个多样化的公共COVID-19数据集上测试了我们模型的性能稳健性,我们还为该数据集提供了布里夏评分注释,观察到良好的直接泛化和微调能力,突出了BS-Net在其他临床环境中的可移植性。为了研究目的,CXR数据集以及源代码和训练模型已公开发布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38de/8010334/32a696907ba9/fx1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验