Energy Transport Lab, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109.
Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2214143120. doi: 10.1073/pnas.2214143120. Epub 2022 Dec 27.
Due to its multifaceted impact in various applications, icing and ice dendrite growth has been the focus of numerous studies in the past. Dendrites on wetting (hydrophilic) and nonwetting (hydrophobic) surfaces are sharp, pointy, branching, and hairy. Here, we show a unique dendrite morphology on state-of-the-art micro/nanostructured oil-impregnated surfaces, which are commonly referred to as slippery liquid-infused porous surfaces or liquid-infused surfaces. Unlike the dendrites on traditional textured hydrophilic and hydrophobic surfaces, the dendrites on oil-impregnated surfaces are thick and lumpy without pattern. Our experiments show that the unique ice dendrite morphology on lubricant-infused surfaces is due to oil wicking into the porous dendritic network because of the capillary pressure imbalance between the surface texture and the dendrites. We characterized the shape complexity of the ice dendrites using fractal analysis. Experiments show that ice dendrites on textured oil-impregnated surfaces have lower fractal dimensions than those on traditional lotus leaf-inspired air-filled porous structures. Furthermore, we developed a regime map that can be used as a design guideline for micro/nanostructured oil-impregnated surfaces by capturing the complex effects of oil chemistry, oil viscosity, and wetting ridge volume on dendrite growth and morphology. The insights gained from this work inform strategies to reduce lubricant depletion, a major bottleneck for the transition of micro/nanostructured oil-impregnated surfaces from bench-top laboratory prototypes to industrial use. This work will assist the development of next-generation depletion-resistant lubricant-infused ice-repellent surfaces.
由于在各种应用中具有多方面的影响,积冰和冰枝晶生长一直是过去众多研究的焦点。在润湿(亲水)和非润湿(疏水)表面上的枝晶是尖锐的、多叉的、分支的和多毛的。在这里,我们展示了在最先进的微/纳米结构化油浸渍表面上的独特枝晶形态,这些表面通常被称为滑润液注入多孔表面或液体注入表面。与传统纹理亲水和疏水表面上的枝晶不同,油浸渍表面上的枝晶没有图案,且厚而块状。我们的实验表明,由于表面纹理和枝晶之间的毛细压力不平衡,油会吸入多孔枝状网络,导致润滑剂注入表面上的独特冰枝晶形态。我们使用分形分析来描述冰枝晶的形状复杂性。实验表明,在具有纹理的油浸渍表面上的冰枝晶的分形维数低于传统的荷叶启发式充气多孔结构上的冰枝晶。此外,我们开发了一个可以作为微/纳米结构化油浸渍表面设计指南的状态图,该图通过捕捉油化学、油粘度和润湿脊体积对枝晶生长和形态的复杂影响。这项工作提供了减少润滑剂耗竭的策略,这是微/纳米结构化油浸渍表面从实验室原型向工业应用过渡的主要瓶颈。这项工作将有助于开发下一代抗耗竭的润滑剂注入冰排斥表面。