Xu Haobo, Herzog Joshua M, Zhou Yimin, Bashirzadeh Yashar, Liu Allen, Adera Solomon
Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States.
ACS Nano. 2024 Feb 6;18(5):4068-4076. doi: 10.1021/acsnano.3c07407. Epub 2024 Jan 26.
Droplets on nanotextured oil-impregnated surfaces have high mobility due to record-low contact angle hysteresis (∼1-3°), attributed to the absence of solid-liquid contact. Past studies have utilized the ultralow droplet adhesion on these surfaces to improve condensation, reduce hydrodynamic drag, and inhibit biofouling. Despite their promising utility, oil-impregnated surfaces are not fully embraced by industry because of the concern for lubricant depletion, the source of which has not been adequately studied. Here, we use planar laser-induced fluorescence (PLIF) to not only visualize the oil layer encapsulating the droplet (aka wrapping layer) but also measure its thickness since the wrapping layer contributes to lubricant depletion. Our PLIF visualization and experiments show that (a) due to the imbalance of interfacial forces at the three-phase contact line, silicone oil forms a wrapping layer on the outer surface of water droplets, (b) the thickness of the wrapping layer is nonuniform both in space and time, and (c) the time-average thickness of the wrapping layer is ∼50 ± 10 nm, a result that compares favorably with our scaling analysis (∼50 nm), which balances the curvature-induced capillary force with the intermolecular van der Waals forces. Our experiments show that, unlike silicone oil, mineral oil does not form a wrapping layer, an observation that can be exploited to mitigate oil depletion of nanotextured oil-impregnated surfaces. Besides advancing our mechanistic understanding of the wrapping oil layer dynamics, the insights gained from this work can be used to quantify the lubricant depletion rate by pendant droplets in dropwise condensation and water harvesting.
纳米纹理化的油浸表面上的液滴具有很高的流动性,这归因于创纪录的低接触角滞后(约1 - 3°),这是由于不存在固 - 液接触。过去的研究利用了这些表面上超低的液滴附着力来改善冷凝、降低流体动力阻力并抑制生物污垢。尽管它们具有很有前景的用途,但油浸表面尚未被工业界完全接受,因为人们担心润滑剂会耗尽,而润滑剂耗尽的原因尚未得到充分研究。在这里,我们使用平面激光诱导荧光(PLIF)不仅可以可视化包裹液滴的油层(即包裹层),还可以测量其厚度,因为包裹层会导致润滑剂耗尽。我们的PLIF可视化和实验表明:(a)由于三相接触线上界面力的不平衡,硅油在水滴的外表面形成包裹层;(b)包裹层的厚度在空间和时间上都是不均匀的;(c)包裹层的时间平均厚度约为50±10纳米,这一结果与我们的尺度分析(约50纳米)相当,该分析平衡了曲率诱导的毛细力和分子间范德华力。我们的实验表明,与硅油不同,矿物油不会形成包裹层,这一观察结果可用于减轻纳米纹理化油浸表面的油耗尽。除了推进我们对包裹油层动力学的机理理解之外,这项工作获得的见解还可用于量化滴状冷凝和集水中悬垂液滴的润滑剂耗尽率。