Suppr超能文献

2 型糖尿病成年患者临床与遗传信息整合的肾病风险预测。

Risk prediction of nephropathy by integrating clinical and genetic information among adult patients with type 2 diabetes.

机构信息

Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan, R.O.C.

Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan, R.O.C.

出版信息

Acta Diabetol. 2023 Mar;60(3):413-424. doi: 10.1007/s00592-022-02017-4. Epub 2022 Dec 28.

Abstract

AIMS

Diabetic nephropathy (DN) is a major healthcare challenge. We developed and internally and externally validated a risk prediction model of DN by integrating clinical factors and SNPs from genes of multiple CKD-related pathways in the Han Chinese population.

MATERIALS AND METHODS

A total of 1526 patients with type 2 diabetes were randomly allocated into derivation (n = 1019) or validation (n = 507) sets. External validation was performed with 3899 participants from the Taiwan Biobank. We selected 66 SNPs identified from literature review for building our weighted genetic risk score (wGRS). The steps for prediction model development integrating clinical and genetic information were based on the Framingham Heart Study.

RESULTS

The AUROC (95% CI) for this DN prediction model with combined clinical factors and wGRS was 0.81 (0.78, 0.84) in the derivation set. Furthermore, by directly using the information of these 66 SNPs, our final prediction model had AUROC values of 0.85 (0.82, 0.87), 0.89 (0.86, 0.91), and 0.77 (0.74, 0.80) in the derivation, internal validation, and external validation sets, respectively. Under the combined model, the results with a cutoff point of 30% showed 70.91% sensitivity, 67.84% specificity, 51.54% positive predictive value, and 82.86% negative predictive value.

CONCLUSIONS

We developed and internally and externally validated a model with clinical factors and SNPs from genes of multiple CKD-related pathways to predict DN in Taiwan. This model can be used in clinical risk management practice as a screening tool to identify persons who are genetically predisposed to DN for early intervention and prevention.

摘要

目的

糖尿病肾病(DN)是一个主要的医疗保健挑战。我们通过整合汉族人群中多个与慢性肾脏病相关通路的基因的临床因素和 SNP,开发并内部和外部验证了一个 DN 风险预测模型。

材料和方法

总共 1526 名 2 型糖尿病患者被随机分配到推导(n=1019)或验证(n=507)组。来自台湾生物库的 3899 名参与者进行了外部验证。我们从文献综述中选择了 66 个 SNP 来构建我们的加权遗传风险评分(wGRS)。整合临床和遗传信息的预测模型开发步骤基于弗雷明汉心脏研究。

结果

在推导组中,该具有临床因素和 wGRS 的 DN 预测模型的 AUROC(95%CI)为 0.81(0.78,0.84)。此外,通过直接使用这 66 个 SNP 的信息,我们的最终预测模型在推导、内部验证和外部验证组中的 AUROC 值分别为 0.85(0.82,0.87)、0.89(0.86,0.91)和 0.77(0.74,0.80)。在联合模型下,截点为 30%时的结果显示出 70.91%的敏感性、67.84%的特异性、51.54%的阳性预测值和 82.86%的阴性预测值。

结论

我们开发并内部和外部验证了一个具有临床因素和来自多个与慢性肾脏病相关通路的基因的 SNP 的模型,以预测台湾的 DN。该模型可用于临床风险管理实践,作为一种筛查工具,以识别具有遗传倾向的 DN 的人,以便进行早期干预和预防。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验