Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
Cell Tissue Res. 2023 May;392(2):499-516. doi: 10.1007/s00441-022-03728-4. Epub 2022 Dec 28.
Trending three-dimensional tissue engineering platforms developed via biofabrication and bioprinting of exocrine glands are on the rise due to a commitment to organogenesis principles. Nevertheless, a proper extracellular matrix (ECM) microarchitecture to harbor primary cells is yet to be established towards human salivary gland (SG) organogenesis. By using porcine submandibular gland (SMG) biopsies as a proof-of-concept to mimic the human SG, a new decellularized ECM bioassembly platform was developed herein with varying perfusions of sodium dodecyl sulfate (SDS) to limit denaturing events and ensure proper preservation of the native ECM biochemical niche. Porcine SMG biopsies were perfused with 0.01%, 0.1%, and 1% SDS and bio-assembled magnetically in porous polycarbonate track-etched (PCTE) membrane. Double-stranded DNA (dsDNA), cell removal efficiency, and ECM biochemical contents were analyzed. SDS at 0.1% and 1% efficiently removed dsDNA (< 50 ng/mg) and preserved key matrix components (sulfated glycosaminoglycans, collagens, elastin) and the microarchitecture of native SMG ECM. Bio-assembled SMG decellularized ECM (dECM) perfused with 0.1-1% SDS enhanced cell viability, proliferation, expansion confluency rates, and tethering of primary SMG cells during 7 culture days. Perfusion with 1% SDS promoted greater cell proliferation rates while 0.1% SDS supported higher acinar epithelial expression when compared to basement membrane extract and other substrates. Thus, this dECM magnetic bioassembly strategy was effective for decellularization while retaining the original ECM biochemical niche and promoting SMG cell proliferation, expansion, differentiation, and tethering. Altogether, these outcomes pave the way towards the recellularization of this novel SMG dECM in future in vitro and in vivo applications.
由于对器官发生原则的承诺,通过生物制造和生物打印外分泌腺开发的流行三维组织工程平台正在兴起。然而,仍然需要建立适当的细胞外基质 (ECM) 微结构来容纳原代细胞,以实现人类唾液腺 (SG) 器官发生。本文使用猪下颌下腺 (SMG) 活检作为概念验证来模拟人类 SG,开发了一种新的去细胞 ECM 生物组装平台,通过不同的十二烷基硫酸钠 (SDS) 灌注来限制变性事件并确保适当保留天然 ECM 生化龛位。将猪 SMG 活检用 0.01%、0.1%和 1% SDS 灌注,并在多孔聚碳酸酯刻蚀 (PCTE) 膜中进行磁性生物组装。分析双链 DNA (dsDNA)、细胞去除效率和 ECM 生化含量。0.1%和 1% 的 SDS 有效地去除了 dsDNA(<50ng/mg),并保留了关键的基质成分 (硫酸化糖胺聚糖、胶原蛋白、弹性蛋白) 和天然 SMG ECM 的微结构。用 0.1-1% SDS 灌注的生物组装 SMG 去细胞 ECM (dECM) 可提高原代 SMG 细胞在 7 天培养期间的细胞活力、增殖、扩展汇合率和附着率。与基底膜提取物和其他底物相比,1% SDS 促进了更高的细胞增殖率,而 0.1% SDS 支持了更高的腺上皮表达。因此,这种 dECM 磁生物组装策略在保留原始 ECM 生化龛位的同时有效地进行了去细胞化,并促进了 SMG 细胞的增殖、扩展、分化和附着。总之,这些结果为未来的体外和体内应用中这种新型 SMG dECM 的再细胞化铺平了道路。