Suppr超能文献

机器学习扩散蒙特卡罗力。

Machine Learning Diffusion Monte Carlo Forces.

机构信息

Department of Chemistry, Brown University, Providence, Rhode Island02912, United States.

出版信息

J Phys Chem A. 2023 Jan 12;127(1):339-355. doi: 10.1021/acs.jpca.2c05904. Epub 2022 Dec 28.

Abstract

Diffusion Monte Carlo (DMC) is one of the most accurate techniques available for calculating the electronic properties of molecules and materials, yet it often remains a challenge to economically compute forces using this technique. As a result, ab initio molecular dynamics simulations and geometry optimizations that employ Diffusion Monte Carlo forces are often out of reach. One potential approach for accelerating the computation of "DMC forces" is to machine learn these forces from DMC energy calculations. In this work, we employ Behler-Parrinello Neural Networks to learn DMC forces from DMC energy calculations for geometry optimization and molecular dynamics simulations of small molecules. We illustrate the unique challenges that stem from learning forces without explicit force data and from noisy energy data by making rigorous comparisons of potential energy surface, dynamics, and optimization predictions among ab initio density functional theory (DFT) simulations and machine-learning models trained on DFT energies with forces, DFT energies without forces, and DMC energies without forces. We show for three small molecules─C, HO, and CHCl─that machine-learned DMC dynamics can reproduce average bond lengths and angles within a few percent of known experimental results at one hundredth of the typical cost. Our work describes a much-needed means of performing dynamics simulations on high-accuracy, DMC PESs and for generating DMC-quality molecular geometries given current algorithmic constraints.

摘要

扩散蒙特卡罗(DMC)是计算分子和材料电子性质最准确的技术之一,但使用该技术经济地计算力仍然是一个挑战。因此,通常无法进行采用扩散蒙特卡罗力的从头算分子动力学模拟和几何优化。加速“DMC 力”计算的一种潜在方法是从 DMC 能量计算中通过机器学习来学习这些力。在这项工作中,我们采用 Behler-Parrinello 神经网络从 DMC 能量计算中学习用于小分子几何优化和分子动力学模拟的 DMC 力。我们通过在具有力的 DFT 能量、没有力的 DFT 能量和没有力的 DMC 能量上训练的与从头算密度泛函理论(DFT)模拟之间进行严格比较,说明了从没有显式力数据和从嘈杂的能量数据学习力所带来的独特挑战,以及对势能面、动力学和优化预测。我们针对三个小分子 C、HO 和 CHCl 证明了,在典型成本的百分之一的情况下,通过机器学习的 DMC 动力学可以在大约 100 倍的成本内将平均键长和角度的再现率提高到已知实验结果的几个百分点。我们的工作描述了一种急需的方法,即在当前算法约束下,可以在高精度 DMC PES 上进行动力学模拟,并生成 DMC 质量的分子几何结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验