Slootman E, Poltavsky I, Shinde R, Cocomello J, Moroni S, Tkatchenko A, Filippi C
MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg.
J Chem Theory Comput. 2024 Jul 23;20(14):6020-6027. doi: 10.1021/acs.jctc.4c00498. Epub 2024 Jul 14.
Quantum Monte Carlo (QMC) is a powerful method to calculate accurate energies and forces for molecular systems. In this work, we demonstrate how we can obtain accurate QMC forces for the fluxional ethanol molecule at room temperature by using either multideterminant Jastrow-Slater wave functions in variational Monte Carlo or just a single determinant in diffusion Monte Carlo. The excellent performance of our protocols is assessed against high-level coupled cluster calculations on a diverse set of representative configurations of the system. Finally, we train machine-learning force fields on the QMC forces and compare them to models trained on coupled cluster reference data, showing that a force field based on the diffusion Monte Carlo forces with a single determinant can faithfully reproduce coupled cluster power spectra in molecular dynamics simulations.
量子蒙特卡罗(QMC)是一种用于计算分子系统精确能量和力的强大方法。在这项工作中,我们展示了如何通过在变分蒙特卡罗中使用多行列式Jastrow - Slater波函数或在扩散蒙特卡罗中仅使用单行列式,来在室温下获得通量乙醇分子的精确QMC力。我们的方法的出色性能是通过针对该系统的各种代表性构型的高水平耦合簇计算来评估的。最后,我们基于QMC力训练机器学习力场,并将它们与基于耦合簇参考数据训练的模型进行比较,结果表明基于具有单行列式的扩散蒙特卡罗力的力场能够在分子动力学模拟中忠实地再现耦合簇功率谱。