文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SAMHD1 沉默通过 IFI16-STING 通路与放疗协同增强肺腺癌的抗肿瘤免疫。

SAMHD1 silencing cooperates with radiotherapy to enhance anti-tumor immunity through IFI16-STING pathway in lung adenocarcinoma.

机构信息

Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.

Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.

出版信息

J Transl Med. 2022 Dec 29;20(1):628. doi: 10.1186/s12967-022-03844-3.


DOI:10.1186/s12967-022-03844-3
PMID:36578072
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9798699/
Abstract

BACKGROUND: Sterile alpha motif domain and histidine-aspartate domain-containing protein 1 (SAMHD1) is a DNA end resection factor, which is involved in DNA damage repair and innate immunity. However, the role of SAMHD1 in anti-tumor immunity is still unknown. This study investigated the effects of SAMHD1 on stimulator of interferon genes (STING)-type I interferon (IFN) pathway and radiation-induced immune responses. METHODS: The roles of SAMHD1 in the activation of cytosolic DNA sensing STING pathway in lung adenocarcinoma (LUAD) cells were investigated with flow cytometry, immunofluorescence, immunoblotting and qPCR. The combined effects of SAMHD1 silencing and radiation on tumor cell growth and STING pathway activation were also evaluated with colony formation and CCK8 assay. The Lewis lung cancer mouse model was used to evaluate the combined efficiency of SAMHD1 silencing and radiotherapy in vivo. Macrophage M1 polarization and cytotoxic T cell infiltration were evaluated with flow cytometry. RESULTS: The single-stranded DNA (ssDNA) accumulated in the cytosol of SAMHD1-deficient lung adenocarcinoma (LUAD) cells, accompanied by upregulated DNA sensor IFN-γ-inducible protein 16 (IFI16) and activated STING pathway. The translocation of IFI16 from nucleus to cytosol was detected in SAMHD1-deficient cells. IFI16 and STING were acquired in the activation of STING-IFN-I pathway in SAMHD1-deficient cells. SAMHD1 silencing in LUAD cells promoted macrophage M1 polarization in vitro. SAMHD1 silencing synergized with radiation to activate ssDNA-STING-IFN-I pathway, inhibit proliferation, promote apoptosis and regulate cell cycle. SAMHD1 silencing cooperated with radiotherapy to inhibit tumor growth and increase CD86MHC-II M1 proportion and CD8 T cell infiltration in vivo. CONCLUSIONS: SAMHD1 deficiency induced IFN-I production through cytosolic IFI16-STING pathway in LUAD cells. Moreover, SAMHD1 downregulation and radiation cooperated to inhibit tumor growth and enhance anti-tumor immune responses through macrophage M1 polarization and CD8 T cell infiltration. Combination of SAMHD1 inhibition and radiotherapy may be a potentially therapeutic strategy for LUAD patients.

摘要

背景:无菌α基序域和天冬氨酸-组氨酸富含域蛋白 1(SAMHD1)是一种 DNA 末端切除因子,参与 DNA 损伤修复和固有免疫。然而,SAMHD1 在抗肿瘤免疫中的作用尚不清楚。本研究探讨了 SAMHD1 对干扰素基因刺激物(STING)-I 型干扰素(IFN)途径和辐射诱导免疫反应的影响。

方法:通过流式细胞术、免疫荧光、免疫印迹和 qPCR 研究了 SAMHD1 在肺腺癌(LUAD)细胞中激活胞质 DNA 感应 STING 途径的作用。还通过集落形成和 CCK8 测定评估了 SAMHD1 沉默和辐射对肿瘤细胞生长和 STING 途径激活的联合作用。使用 Lewis 肺癌小鼠模型评估 SAMHD1 沉默和放疗在体内的联合效率。通过流式细胞术评估巨噬细胞 M1 极化和细胞毒性 T 细胞浸润。

结果:SAMHD1 缺陷的肺腺癌细胞(LUAD)细胞中积累了单链 DNA(ssDNA),同时 DNA 传感器 IFN-γ诱导蛋白 16(IFI16)上调并激活了 STING 途径。在 SAMHD1 缺陷细胞中检测到 IFI16 从核到细胞质的易位。IFI16 和 STING 在 SAMHD1 缺陷细胞中 STING-IFN-I 途径的激活中被获得。在体外,SAMHD1 沉默促进了 LUAD 细胞中巨噬细胞 M1 极化。SAMHD1 沉默与辐射协同激活 ssDNA-STING-IFN-I 途径,抑制增殖,促进凋亡并调节细胞周期。SAMHD1 沉默与放疗协同抑制肿瘤生长,并增加体内 CD86MHC-II M1 比例和 CD8 T 细胞浸润。

结论:SAMHD1 缺陷通过 LUAD 细胞中的胞质 IFI16-STING 途径诱导 IFN-I 产生。此外,SAMHD1 下调与辐射协同抑制肿瘤生长并通过巨噬细胞 M1 极化和 CD8 T 细胞浸润增强抗肿瘤免疫反应。SAMHD1 抑制与放疗的联合可能是 LUAD 患者的一种潜在治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/9798699/ffdccfacd1f0/12967_2022_3844_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/9798699/77b76c89a2e5/12967_2022_3844_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/9798699/73a55a4f1f0b/12967_2022_3844_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/9798699/8828739edf69/12967_2022_3844_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/9798699/edf6b7265ecb/12967_2022_3844_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/9798699/1abebda3b637/12967_2022_3844_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/9798699/a16f94f3e215/12967_2022_3844_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/9798699/1c61cf5f5152/12967_2022_3844_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/9798699/a30dca9eeb7e/12967_2022_3844_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/9798699/ffdccfacd1f0/12967_2022_3844_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/9798699/77b76c89a2e5/12967_2022_3844_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/9798699/73a55a4f1f0b/12967_2022_3844_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/9798699/8828739edf69/12967_2022_3844_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/9798699/edf6b7265ecb/12967_2022_3844_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/9798699/1abebda3b637/12967_2022_3844_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/9798699/a16f94f3e215/12967_2022_3844_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/9798699/1c61cf5f5152/12967_2022_3844_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/9798699/a30dca9eeb7e/12967_2022_3844_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/9798699/ffdccfacd1f0/12967_2022_3844_Fig9_HTML.jpg

相似文献

[1]
SAMHD1 silencing cooperates with radiotherapy to enhance anti-tumor immunity through IFI16-STING pathway in lung adenocarcinoma.

J Transl Med. 2022-12-29

[2]
RRM2 silencing suppresses malignant phenotype and enhances radiosensitivity via activating cGAS/STING signaling pathway in lung adenocarcinoma.

Cell Biosci. 2021-4-15

[3]
SAMHD1 can suppress lung adenocarcinoma progression through the negative regulation of STING.

J Thorac Dis. 2021-1

[4]
Interferon-induced factor 16 is essential in metastatic melanoma to maintain STING levels and the immune responses upon IFN-γ response pathway activation.

J Immunother Cancer. 2024-10-18

[5]
Silencing PinX1 enhances radiosensitivity and antitumor-immunity of radiotherapy in non-small cell lung cancer.

J Transl Med. 2024-3-2

[6]
Activation of STING by SAMHD1 Deficiency Promotes PANoptosis and Enhances Efficacy of PD-L1 Blockade in Diffuse Large B-cell Lymphoma.

Int J Biol Sci. 2023

[7]
IFN-γ activates the tumor cell-intrinsic STING pathway through the induction of DNA damage and cytosolic dsDNA formation.

Oncoimmunology. 2022

[8]
Restriction by SAMHD1 Limits cGAS/STING-Dependent Innate and Adaptive Immune Responses to HIV-1.

Cell Rep. 2016-8-9

[9]
Deficiency for SAMHD1 activates MDA5 in a cGAS/STING-dependent manner.

J Exp Med. 2023-1-2

[10]
Histone H2B-IFI16 Recognition of Nuclear Herpesviral Genome Induces Cytoplasmic Interferon-β Responses.

PLoS Pathog. 2016-10-20

引用本文的文献

[1]
R-loops: a key driver of inflammatory responses in cancer.

Exp Mol Med. 2025-7-8

[2]
Orchestration of Tumor-Associated Macrophages in the Tumor Cell-Macrophage-CD8 T Cell Loop for Cancer Immunotherapy.

Int J Biol Sci. 2025-6-12

[3]
Identification of biomarkers and potential drug targets in DFU based on fundamental experiments and multi-omics joint analysis.

Front Pharmacol. 2025-5-23

[4]
SAMHD1 enhances HIV-1-induced apoptosis in monocytic cells via the mitochondrial pathway.

mBio. 2025-5-28

[5]
The dual roles of human PYHIN family proteins in cancer: mechanisms and therapeutic implications.

Front Immunol. 2025-5-2

[6]
Harnessing single-cell and multi-omics insights: STING pathway-based predictive signature for immunotherapy response in lung adenocarcinoma.

Front Immunol. 2025-4-16

[7]
Potential role of lactylation in intrinsic immune pathways in lung cancer.

Front Pharmacol. 2025-3-17

[8]
SAMHD1 enhances HIV-1-induced apoptosis in monocytic cells via the mitochondrial pathway.

bioRxiv. 2025-1-9

[9]
Ampelopsis japonica enhances the effect of radiotherapy in non-small cell lung cancer.

Strahlenther Onkol. 2024-12-4

[10]
Daidzein Inhibits Non-small Cell Lung Cancer Growth by Pyroptosis.

Curr Pharm Des. 2025

本文引用的文献

[1]
SAMHD1 as a prognostic and predictive biomarker in stage II colorectal cancer: A multicenter cohort study.

Front Oncol. 2022-8-1

[2]
Stalled replication fork protection limits cGAS-STING and P-body-dependent innate immune signalling.

Nat Cell Biol. 2022-7

[3]
PWWP2B promotes DNA end resection and homologous recombination.

EMBO Rep. 2022-7-5

[4]
MRNIP condensates promote DNA double-strand break sensing and end resection.

Nat Commun. 2022-5-12

[5]
Modulation of DNA Damage Response by SAM and HD Domain Containing Deoxynucleoside Triphosphate Triphosphohydrolase (SAMHD1) Determines Prognosis and Treatment Efficacy in Different Solid Tumor Types.

Cancers (Basel). 2022-1-27

[6]
ZGRF1 promotes end resection of DNA homologous recombination via forming complex with BRCA1/EXO1.

Cell Death Discov. 2021-9-22

[7]
SAMHD1 in cancer: curse or cure?

J Mol Med (Berl). 2022-3

[8]
p97/VCP inhibition causes excessive MRE11-dependent DNA end resection promoting cell killing after ionizing radiation.

Cell Rep. 2021-5-25

[9]
Aicardi-Goutières syndrome-associated gene SAMHD1 preserves genome integrity by preventing R-loop formation at transcription-replication conflict regions.

PLoS Genet. 2021-4

[10]
Excessive R-loops trigger an inflammatory cascade leading to increased HSPC production.

Dev Cell. 2021-3-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索