Suppr超能文献

单原子 Pd-N 催化剂用于稳定的低过电位锂-氧电池。

Single-Atom Pd-N Catalysis for Stable Low-Overpotential Lithium-Oxygen Battery.

机构信息

Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100190, China.

出版信息

Small. 2023 Mar;19(10):e2204559. doi: 10.1002/smll.202204559. Epub 2022 Dec 29.

Abstract

The critical challenge for Li-O batteries lies in the large charge overpotential, leading to undesirable side reactions and inferior cycle stability. Single-atom catalysts have shown promising prospects in expediting the kinetics of oxygen evolution reaction (OER) for Li-O batteries. However, a present practical drawback is the limited understanding of the correlation between the unique atomic structures and the OER mechanism. Herein, a template-assisted strategy is reported to synthesize atomically dispersed Pd anchored on N-doped carbon spheres as cathode catalysts. Benefiting from the well-defined Pd-N moiety, the morphology and distribution of Li O products are distinctly regulated with optimized decomposition reversibility. Theoretical simulations reveal that the unique configuration of Pd-N will contribute to the electron transfer from Pd atoms to the adjacent N atoms, which turns the originally electroneutral Pd into positively charged and downshifts the d-band center and therefore weakens its adsorption energy with the intermediates. The Li-O batteries with Pd SAs/NC cathode achieve a charge overpotential of only 0.24 V and sustainable low-overpotential cycling stability (500 mA g ), and can retain a low charge voltage to a very high capacity of 10 000 mAh g . This work provides some insights into designing efficient single-atom catalysts for stable low-overpotential Li-O batteries.

摘要

锂氧电池面临的关键挑战在于充电过电位大,导致副反应不可取和循环稳定性差。单原子催化剂在加速锂氧电池的氧气析出反应(OER)动力学方面表现出了很有前景的应用。然而,目前一个实际的缺点是对独特原子结构与 OER 机制之间的相关性的认识有限。本文报道了一种模板辅助策略,用于合成原子分散的 Pd 锚定在 N 掺杂的碳球上作为阴极催化剂。得益于明确的 Pd-N 部分,LiO 产物的形态和分布得到了明显的调节,具有优化的分解可逆性。理论模拟表明,Pd-N 的独特结构有助于电子从 Pd 原子转移到相邻的 N 原子,这将原本电中性的 Pd 变成带正电荷,并降低 d 带中心,从而削弱其与中间体的吸附能。具有 Pd SAs/NC 阴极的锂氧电池仅需 0.24 V 的充电过电位和可持续的低过电位循环稳定性(500 mA g),并可以保持低充电电压到非常高的容量 10000 mAh g。这项工作为设计高效的单原子催化剂用于稳定的低过电位锂氧电池提供了一些见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验