School of Materials Science and Engineering, Peking University, Beijing 100871, China.
Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China.
Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2301439120. doi: 10.1073/pnas.2301439120. Epub 2023 Jun 12.
Catalysts with a refined electronic structure are highly desirable for promoting the oxygen evolution reaction (OER) kinetics and reduce the charge overpotentials for lithium-oxygen (Li-O) batteries. However, bridging the orbital interactions inside the catalyst with external orbital coupling between catalysts and intermediates for reinforcing OER catalytic activities remains a grand challenge. Herein, we report a cascaded orbital-oriented hybridization, namely alloying hybridization in intermetallic PdPb followed by intermolecular orbital hybridization between low-energy Pd atom and reaction intermediates, for greatly enhancing the OER electrocatalytic activity in Li-O battery. The oriented orbital hybridization in two axes between Pb and Pd first lowers the d band energy level of Pd atoms in the intermetallic PdPb; during the charging process, the low-lying 4d and 4d orbital of the Pd further hybridizes with 2π* and 5σ orbitals of lithium superoxide (LiO) (key reaction intermediate), eventually leading to lower energy levels of antibonding and, thus, weakened orbital interaction toward LiO. As a consequence, the cascaded orbital-oriented hybridization in intermetallic PdPb considerably decreases the activation energy and accelerates the OER kinetics. The PdPb-based Li-O batteries exhibit a low OER overpotential of 0.45 V and superior cycle stability of 175 cycles at a fixed capacity of 1,000 mAh g, which is among the best in the reported catalysts. The present work opens up a way for designing sophisticated Li-O batteries at the orbital level.
具有精细电子结构的催化剂对于促进析氧反应(OER)动力学和降低锂-氧(Li-O)电池的电荷过电位非常理想。然而,桥接催化剂内部的轨道相互作用与催化剂和中间体之间的外部轨道偶联以增强 OER 催化活性仍然是一个巨大的挑战。在此,我们报告了一种级联轨道导向杂化,即在金属间化合物 PdPb 中进行合金化杂化,然后在低能量 Pd 原子和反应中间体之间进行分子间轨道杂化,从而大大增强了 Li-O 电池中的 OER 电催化活性。Pb 和 Pd 之间两个轴上的定向轨道杂化首先降低了金属间化合物 PdPb 中 Pd 原子的 d 带能级;在充电过程中,Pd 的低能 4d 和 4d 轨道进一步与氧化锂(LiO)(关键反应中间体)的 2π*和 5σ轨道杂化,最终导致反键的能级降低,从而减弱了对 LiO 的轨道相互作用。因此,金属间化合物 PdPb 中的级联轨道导向杂化大大降低了活化能并加速了 OER 动力学。基于 PdPb 的 Li-O 电池在固定容量为 1,000 mAh g 时,具有 0.45 V 的低 OER 过电位和 175 次循环的优异循环稳定性,这在已报道的催化剂中是最好的之一。本工作为在轨道水平上设计复杂的 Li-O 电池开辟了一条途径。