IRIDIA, Université libre de Bruxelles, Brussels, Belgium.
Sci Data. 2022 Dec 29;9(1):788. doi: 10.1038/s41597-022-01895-1.
The discrepancy between simulation and reality-known as the reality gap-is one of the main challenges associated with using simulations to design control software for robot swarms. Currently, the reality-gap problem necessitates expensive and time consuming tests on physical robots to reliably assess control software. Predicting real-world performance accurately without recurring to physical experiments would be particularly valuable. In this paper, we compare various simulation-based predictors of the performance of robot swarms that have been proposed in the literature but never evaluated empirically. We consider (1) the classical approach adopted to estimate real-world performance, which relies on the evaluation of control software on the simulation model used in the design process, and (2) some so-called pseudo-reality predictors, which rely on simulation models other than the one used in the design process. To evaluate these predictors, we reuse 1021 instances of control software and their real-world performance gathered from seven previous studies. Results show that the pseudo-reality predictors considered yield more accurate estimates of the real-world performance than the classical approach.
模拟与现实之间的差异——即现实差距,是使用模拟为机器人集群设计控制软件时面临的主要挑战之一。目前,为了可靠地评估控制软件,必须在物理机器人上进行昂贵且耗时的测试,以解决现实差距问题。如果不进行物理实验就能准确预测实际性能,那将是非常有价值的。在本文中,我们比较了文献中提出但从未经过实证评估的各种基于模拟的机器人集群性能预测方法。我们考虑了 (1) 用于估计实际性能的经典方法,该方法依赖于在设计过程中使用的模拟模型上评估控制软件,以及 (2) 一些所谓的伪现实预测器,它们依赖于设计过程中使用的模拟模型以外的其他模型。为了评估这些预测器,我们重新使用了从七个先前的研究中收集的 1021 个控制软件实例及其真实世界的性能数据。结果表明,与经典方法相比,所考虑的伪现实预测器能够更准确地估计实际性能。