Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.
FASEB J. 2023 Feb;37(2):e22741. doi: 10.1096/fj.202201157RR.
The SARS-CoV-2 life cycle is strictly dependent on the environmental redox state that influences both virus entry and replication. A reducing environment impairs the binding of the spike protein (S) to the angiotensin-converting enzyme 2 receptor (ACE2), while a highly oxidizing environment is thought to favor S interaction with ACE2. Moreover, SARS-CoV-2 interferes with redox homeostasis in infected cells to promote the oxidative folding of its own proteins. Here we demonstrate that synthetic low molecular weight (LMW) monothiol and dithiol compounds induce a redox switch in the S protein receptor binding domain (RBD) toward a more reduced state. Reactive cysteine residue profiling revealed that all the disulfides present in RBD are targets of the thiol compounds. The reduction of disulfides in RBD decreases the binding to ACE2 in a cell-free system as demonstrated by enzyme-linked immunosorbent and surface plasmon resonance (SPR) assays. Moreover, LMW thiols interfere with protein oxidative folding and the production of newly synthesized polypeptides in HEK293 cells expressing the S1 and RBD domain, respectively. Based on these results, we hypothesize that these thiol compounds impair both the binding of S protein to its cellular receptor during the early stage of viral infection, as well as viral protein folding/maturation and thus the formation of new viral mature particles. Indeed, all the tested molecules, although at different concentrations, efficiently inhibit both SARS-CoV-2 entry and replication in Vero E6 cells. LMW thiols may represent innovative anti-SARS-CoV-2 therapeutics acting directly on viral targets and indirectly by inhibiting cellular functions mandatory for viral replication.
SARS-CoV-2 的生命周期严格依赖于环境氧化还原状态,该状态既影响病毒的进入又影响病毒的复制。还原环境会削弱刺突蛋白(S)与血管紧张素转换酶 2 受体(ACE2)的结合,而高度氧化的环境则有利于 S 与 ACE2 的相互作用。此外,SARS-CoV-2 会干扰受感染细胞中的氧化还原稳态,以促进其自身蛋白的氧化折叠。在这里,我们证明合成的低分子量(LMW)单硫醇和二硫醇化合物会诱导 S 蛋白受体结合域(RBD)中的氧化还原开关向更还原的状态转变。反应性半胱氨酸残基分析表明,RBD 中存在的所有二硫键都是这些巯基化合物的靶标。RBD 中二硫键的还原降低了在无细胞系统中与 ACE2 的结合,这一点通过酶联免疫吸附和表面等离子体共振(SPR)测定得到了证实。此外,LMW 巯基化合物会干扰氧化折叠和新合成多肽的产生,这分别在表达 S1 和 RBD 结构域的 HEK293 细胞中得到了证实。基于这些结果,我们假设这些巯基化合物会损害病毒感染早期 S 蛋白与其细胞受体的结合,以及病毒蛋白的折叠/成熟,从而阻止新的成熟病毒颗粒的形成。事实上,所有测试的分子虽然浓度不同,但都能有效地抑制 SARS-CoV-2 在 Vero E6 细胞中的进入和复制。低分子量巯基化合物可能是一种直接作用于病毒靶点、间接抑制病毒复制所需细胞功能的新型抗 SARS-CoV-2 治疗药物。