Suppr超能文献

DAE-ConvBiLSTM:端到端学习单导联心电图信号以检测心脏异常。

DAE-ConvBiLSTM: End-to-end learning single-lead electrocardiogram signal for heart abnormalities detection.

机构信息

Intelligent System Research Group, Faculty of Computer Science, Universitas Sriwijaya, Palembang, Indonesia.

Department of Cardiology & Vascular Medicine, Dr. Mohammad Hoesin Hospital, Palembang, Indonesia.

出版信息

PLoS One. 2022 Dec 30;17(12):e0277932. doi: 10.1371/journal.pone.0277932. eCollection 2022.

Abstract

BACKGROUND

The electrocardiogram (ECG) is a widely used diagnostic that observes the heart activities of patients to ascertain a heart abnormality diagnosis. The artifacts or noises are primarily associated with the problem of ECG signal processing. Conventional denoising techniques have been proposed in previous literature; however, some lacks, such as the determination of suitable wavelet basis function and threshold, can be a time-consuming process. This paper presents end-to-end learning using a denoising auto-encoder (DAE) for denoising algorithms and convolutional-bidirectional long short-term memory (ConvBiLSTM) for ECG delineation to classify ECG waveforms in terms of the PQRST-wave and isoelectric lines. The denoising reconstruction using unsupervised learning based on the encoder-decoder process can be proposed to improve the drawbacks. First, The ECG signals are reduced to a low-dimensional vector in the encoder. Second, the decoder reconstructed the signals. The last, the reconstructed signals of ECG can be processed to ConvBiLSTM. The proposed architecture of DAE-ConvBiLSTM is the end-to-end diagnosis of heart abnormality detection.

RESULTS

As a result, the performance of DAE-ConvBiLSTM has obtained an average of above 98.59% accuracy, sensitivity, specificity, precision, and F1 score from the existing studies. The DAE-ConvBiLSTM has also experimented with detecting T-wave (due to ventricular repolarisation) morphology abnormalities.

CONCLUSION

The development architecture for detecting heart abnormalities using an unsupervised learning DAE and supervised learning ConvBiLSTM can be proposed for an end-to-end learning algorithm. In the future, the precise accuracy of the ECG main waveform will affect heart abnormalities detection in clinical practice.

摘要

背景

心电图(ECG)是一种广泛使用的诊断工具,用于观察患者的心脏活动,以确定心脏异常的诊断。伪迹或噪声主要与 ECG 信号处理问题有关。在之前的文献中已经提出了常规的去噪技术;然而,有些不足之处,例如确定合适的小波基函数和阈值,可能是一个耗时的过程。本文提出了一种端到端学习方法,使用去噪自动编码器(DAE)进行去噪算法和卷积双向长短期记忆(ConvBiLSTM)进行 ECG 描绘,以根据 PQRST 波和等电位线对 ECG 波形进行分类。基于编码器-解码器过程的无监督学习的去噪重建可以被提出以改进缺点。首先,ECG 信号在编码器中被降低到低维向量。其次,解码器重建信号。最后,ECG 的重建信号可以被处理到 ConvBiLSTM。DAE-ConvBiLSTM 的提出架构是心脏异常检测的端到端诊断。

结果

结果,DAE-ConvBiLSTM 的性能从现有研究中获得了平均超过 98.59%的准确率、灵敏度、特异性、精度和 F1 分数。DAE-ConvBiLSTM 还实验性地检测了 T 波(由于心室复极)形态异常。

结论

可以提出使用无监督学习 DAE 和监督学习 ConvBiLSTM 来检测心脏异常的开发架构,用于端到端学习算法。在未来,ECG 主要波形的精确准确性将影响临床实践中的心脏异常检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f2b/9803308/d0a12f625e8f/pone.0277932.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验