Suppr超能文献

通过虚拟切片对人工耳蜗植入后的纤维化和骨化进行三维定量:对残余听力的潜在影响。

Three-dimensional quantification of fibrosis and ossification after cochlear implantation via virtual re-sectioning: Potential implications for residual hearing.

机构信息

Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School, Boston, MA, USA; Otopathology Laboratory, Massachusetts Eye and Ear, Boston, MA, USA; ExpORL, Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium.

Otopathology Laboratory, Massachusetts Eye and Ear, Boston, MA, USA.

出版信息

Hear Res. 2023 Feb;428:108681. doi: 10.1016/j.heares.2022.108681. Epub 2022 Dec 20.

Abstract

Hearing preservation may be achieved initially in the majority of patients after cochlear implantation, however, a significant proportion of these patients experience delayed hearing loss months or years later. A prior histological report in a case of delayed hearing loss suggested a potential cochlear mechanical origin of this hearing loss due to tissue fibrosis, and older case series highlight the frequent findings of post-implantation fibrosis and neoosteogenesis though without a focus on the impact on residual hearing. Here we present the largest series (N = 20) of 3-dimensionally reconstructed cochleae based on digitally scanned histologic sections from patients who were implanted during their lifetime. All patients were implanted with multichannel electrodes via a cochleostomy or an extended round window insertion. A quantified analysis of intracochlear tissue formation was carried out via virtual re-sectioning orthogonal to the cochlear spiral. Intracochlear tissue formation was present in every case. On average 33% (SD 14%) of the total cochlear volume was occupied by new tissue formation, consisting of 26% (SD 12%) fibrous and 7% (SD 6%) bony tissue. The round window was completely covered by fibro-osseous tissue in 85% of cases and was associated with an obstruction of the cochlear aqueduct in 100%. The basal part of the basilar membrane was at least partially abutted by the electrode or new tissue formation in every case, while the apical region, corresponding with a characteristic frequency of < 500 Hz, appeared normal in 89%. This quantitative analysis shows that after cochlear implantation via extended round window or cochleostomy, intracochlear fibrosis and neoossification are present in all cases at anatomical locations that could impact normal inner ear mechanics.

摘要

在大多数接受耳蜗植入的患者中,听力保护最初可能得到实现,但其中相当一部分患者在数月或数年后会出现迟发性听力损失。先前有一例迟发性听力损失的病例报告提示,由于组织纤维化,这种听力损失可能存在耳蜗机械性原因,并且较旧的病例系列强调了植入后纤维化和新生骨形成的常见发现,尽管没有关注其对残余听力的影响。在这里,我们展示了基于在有生之年接受植入的患者的数字化扫描组织学切片的 20 例最大系列(N=20)的 3 维重建耳蜗。所有患者均通过耳蜗造口术或扩大圆窗插入术植入多通道电极。通过与耳蜗螺旋正交的虚拟切片对耳蜗内组织形成进行了定量分析。在每个病例中均存在耳蜗内组织形成。平均而言,新组织形成占据了总耳蜗体积的 33%(SD 14%),由 26%(SD 12%)纤维组织和 7%(SD 6%)骨组织组成。在 85%的病例中,圆窗完全被纤维-骨组织覆盖,并且在 100%的病例中与耳蜗导水管阻塞有关。基底膜的基底部分在每个病例中至少部分与电极或新组织形成相邻,而与特征频率<500 Hz 对应的顶端区域在 89%的情况下正常。这种定量分析表明,通过扩大圆窗或耳蜗造口术进行耳蜗植入后,在所有病例中,在内耳机械可能受到影响的解剖位置都存在耳蜗内纤维化和新生骨形成。

相似文献

2
Delayed low frequency hearing loss caused by cochlear implantation interventions via the round window but not cochleostomy.
Hear Res. 2016 Mar;333:49-57. doi: 10.1016/j.heares.2015.12.012. Epub 2015 Dec 29.
3
Human Histology after Structure Preservation Cochlear Implantation via Round Window Insertion.
Laryngoscope. 2024 Feb;134(2):945-953. doi: 10.1002/lary.30900. Epub 2023 Jul 26.
4
Insertion site and sealing technique affect residual hearing and tissue formation after cochlear implantation.
Hear Res. 2014 Jun;312:21-7. doi: 10.1016/j.heares.2014.02.002. Epub 2014 Feb 22.
7
The Effect of Round Window Sealants on Delayed Hearing Loss in a Guinea Pig Model of Cochlear Implantation.
Otol Neurotol. 2016 Sep;37(8):1024-31. doi: 10.1097/MAO.0000000000001132.
8
Comparison of round window and cochleostomy approaches with a prototype hearing preservation electrode.
Audiol Neurootol. 2006;11 Suppl 1:42-8. doi: 10.1159/000095613. Epub 2006 Oct 6.
10
Cochlear implant electrode insertion: in defence of cochleostomy and factors against the round window membrane approach.
Cochlear Implants Int. 2011 Aug;12 Suppl 2:S36-9. doi: 10.1179/146701011X13074645127478.

引用本文的文献

2
Molded Round Window Niche Implant as a Dexamethasone Delivery System in a Cochlear Implant-Trauma Animal Model.
Pharmaceutics. 2024 Sep 23;16(9):1236. doi: 10.3390/pharmaceutics16091236.
4
Innovative computed tomography based mapping of the surgical posterior tympanotomy: An exploratory study.
Heliyon. 2024 Aug 14;10(16):e36335. doi: 10.1016/j.heliyon.2024.e36335. eCollection 2024 Aug 30.
5
Delayed hearing loss after cochlear implantation: Re-evaluating the role of hair cell degeneration.
Hear Res. 2024 Jun;447:109024. doi: 10.1016/j.heares.2024.109024. Epub 2024 May 3.
6
Intracochlear Trauma and Local Ossification Patterns Differ Between Straight and Precurved Cochlear Implant Electrodes.
Otol Neurotol. 2024 Mar 1;45(3):245-255. doi: 10.1097/MAO.0000000000004102. Epub 2024 Jan 17.
7
Using x-ray micro computed tomography to quantify intracochlear fibrosis after cochlear implantation in a Guinea pig model.
Heliyon. 2023 Aug 19;9(9):e19343. doi: 10.1016/j.heliyon.2023.e19343. eCollection 2023 Sep.
9
Cochlear implant electrode impedance subcomponents as biomarker for residual hearing.
Front Neurol. 2023 May 23;14:1183116. doi: 10.3389/fneur.2023.1183116. eCollection 2023.

本文引用的文献

1
Human vestibular schwannoma reduces density of auditory nerve fibers in the osseous spiral lamina.
Hear Res. 2022 May;418:108458. doi: 10.1016/j.heares.2022.108458. Epub 2022 Feb 7.
2
Ultra-High-Resolution CT to Detect Intracochlear New Bone Formation after Cochlear Implantation.
Radiology. 2022 Mar;302(3):605-612. doi: 10.1148/radiol.211400. Epub 2021 Dec 7.
3
Primary Neural Degeneration in Noise-Exposed Human Cochleas: Correlations with Outer Hair Cell Loss and Word-Discrimination Scores.
J Neurosci. 2021 May 19;41(20):4439-4447. doi: 10.1523/JNEUROSCI.3238-20.2021. Epub 2021 Apr 21.
4
5
Investigation of Mechanisms in Bone Conduction Hyperacusis With Third Window Pathologies Based on Model Predictions.
Front Neurol. 2020 Sep 2;11:966. doi: 10.3389/fneur.2020.00966. eCollection 2020.
6
Age-Related Hearing Loss Is Dominated by Damage to Inner Ear Sensory Cells, Not the Cellular Battery That Powers Them.
J Neurosci. 2020 Aug 12;40(33):6357-6366. doi: 10.1523/JNEUROSCI.0937-20.2020. Epub 2020 Jul 20.
7
Nanomechanical mapping reveals localized stiffening of the basilar membrane after cochlear implantation.
Hear Res. 2020 Jan;385:107846. doi: 10.1016/j.heares.2019.107846. Epub 2019 Nov 16.
8
Superior Canal Dehiscence Similarly Affects Cochlear Pressures in Temporal Bones and Audiograms in Patients.
Ear Hear. 2020 Jul/Aug;41(4):804-810. doi: 10.1097/AUD.0000000000000799.
9
Cochlear partition anatomy and motion in humans differ from the classic view of mammals.
Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):13977-13982. doi: 10.1073/pnas.1900787116. Epub 2019 Jun 24.
10
Assessing fractional hair cell survival in archival human temporal bones.
Laryngoscope. 2020 Feb;130(2):487-495. doi: 10.1002/lary.27991. Epub 2019 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验