Suppr超能文献

利用 VICOS 评估 SARS-CoV-2 共识序列下的隐藏多样性,VICOS 是一种用于鉴定混合病毒群体的新型生物信息学管道。

Assessing the hidden diversity underlying consensus sequences of SARS-CoV-2 using VICOS, a novel bioinformatic pipeline for identification of mixed viral populations.

机构信息

Laboratorio de Virología, Hospital de Niños Dr. Ricardo Gutiérrez, CABA, Argentina.

Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Ciudad de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.

出版信息

Virus Res. 2023 Feb;325:199035. doi: 10.1016/j.virusres.2022.199035. Epub 2022 Dec 28.

Abstract

INTRODUCTION

Coinfection with two SARS-CoV-2 viruses is still a very understudied phenomenon. Although next generation sequencing methods are very sensitive to detect heterogeneous viral populations in a sample, there is no standardized method for their characterization, so their clinical and epidemiological importance is unknown.

MATERIAL AND METHODS

We developed VICOS (Viral COinfection Surveillance), a new bioinformatic algorithm for variant calling, filtering and statistical analysis to identify samples suspected of being mixed SARS-CoV-2 populations from a large dataset in the framework of a community genomic surveillance. VICOS was used to detect SARS-CoV-2 coinfections in a dataset of 1,097 complete genomes collected between March 2020 and August 2021 in Argentina.

RESULTS

We detected 23 cases (2%) of SARS-CoV-2 coinfections. Detailed study of VICOS's results together with additional phylogenetic analysis revealed 3 cases of coinfections by two viruses of the same lineage, 2 cases by viruses of different genetic lineages, 13 were compatible with both coinfection and intra-host evolution, and 5 cases were likely a product of laboratory contamination.

DISCUSSION

Intra-sample viral diversity provides important information to understand the transmission dynamics of SARS-CoV-2. Advanced bioinformatics tools, such as VICOS, are a necessary resource to help unveil the hidden diversity of SARS-CoV-2.

摘要

简介

两种 SARS-CoV-2 病毒的合并感染仍然是一个研究甚少的现象。尽管下一代测序方法非常灵敏,可以检测样本中异质病毒群体,但目前还没有用于其特征描述的标准化方法,因此其临床和流行病学意义尚不清楚。

材料与方法

我们开发了 VICOS(病毒合并感染监测),这是一种新的生物信息学算法,用于变体调用、过滤和统计分析,以从社区基因组监测框架中的大型数据集识别疑似混合 SARS-CoV-2 种群的样本。VICOS 用于检测 2020 年 3 月至 2021 年 8 月在阿根廷收集的 1097 个完整基因组数据集的 SARS-CoV-2 合并感染。

结果

我们检测到 23 例(2%)SARS-CoV-2 合并感染。通过与额外的系统发育分析一起详细研究 VICOS 的结果,发现了 3 例由同一谱系的两种病毒引起的合并感染,2 例由不同遗传谱系的病毒引起,13 例与合并感染和宿主内进化均兼容,5 例可能是实验室污染的产物。

讨论

样本内病毒多样性为了解 SARS-CoV-2 的传播动态提供了重要信息。先进的生物信息学工具,如 VICOS,是揭示 SARS-CoV-2 隐藏多样性的必要资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/669b/10194104/8b5829b87605/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验