Moura Ivan, Teles Ariel, Viana Davi, Marques Jean, Coutinho Luciano, Silva Francisco
Laboratory of Intelligent Distributed Systems (LSDi), Federal University of Maranhão, Brazil.
Laboratory of Intelligent Distributed Systems (LSDi), Federal University of Maranhão, Brazil; Federal Institute of Maranhão, Brazil.
J Biomed Inform. 2023 Feb;138:104278. doi: 10.1016/j.jbi.2022.104278. Epub 2022 Dec 29.
Many studies have used Digital Phenotyping of Mental Health (DPMH) to complement classic methods of mental health assessment and monitoring. This research area proposes innovative methods that perform multimodal sensing of multiple situations of interest (e.g., sleep, physical activity, mobility) to health professionals. In this paper, we present a Systematic Literature Review (SLR) to recognize, characterize and analyze the state of the art on DPMH using multimodal sensing of multiple situations of interest to professionals. We searched for studies in six digital libraries, which resulted in 1865 retrieved published papers. Next, we performed a systematic process of selecting studies based on inclusion and exclusion criteria, which selected 59 studies for the data extraction phase. First, based on the analysis of the extracted data, we describe an overview of this field, then presenting characteristics of the selected studies, the main mental health topics targeted, the physical and virtual sensors used, and the identified situations of interest. Next, we outline answers to research questions, describing the context data sources used to detect situations, the DPMH workflow used for multimodal sensing of situations, and the application of DPMH solutions in the mental health assessment and monitoring process. In addition, we recognize trends presented by DPMH studies, such as the design of solutions for high-level information recognition, association of features with mental states/disorders, classification of mental states/disorders, and prediction of mental states/disorders. We also recognize the main open issues in this research area. Based on the results of this SLR, we conclude that despite the potential and continuous evolution for using these solutions as medical decision support tools, this research area needs more work to overcome technology and methodological rigor issues to adopt proposed solutions in real clinical settings.
许多研究已采用心理健康数字表型分析(DPMH)来补充心理健康评估和监测的传统方法。该研究领域提出了创新方法,能对医疗专业人员感兴趣的多种情况(如睡眠、身体活动、移动性)进行多模态感知。在本文中,我们进行了一项系统文献综述(SLR),以识别、描述和分析利用对专业人员感兴趣的多种情况进行多模态感知的DPMH的现有技术水平。我们在六个数字图书馆中搜索研究,共检索到1865篇已发表论文。接下来,我们根据纳入和排除标准进行了系统的研究选择过程,挑选出59项研究进入数据提取阶段。首先,基于对提取数据的分析,我们描述了该领域的概况,接着介绍所选研究的特点、所针对的主要心理健康主题、使用的物理和虚拟传感器,以及确定的感兴趣情况。然后,我们概述了对研究问题的回答,描述了用于检测情况的上下文数据源、用于情况多模态感知的DPMH工作流程,以及DPMH解决方案在心理健康评估和监测过程中的应用。此外,我们识别了DPMH研究呈现的趋势,如高级信息识别解决方案的设计、特征与心理状态/障碍的关联、心理状态/障碍的分类以及心理状态/障碍的预测。我们还识别了该研究领域的主要未解决问题。基于这项SLR的结果,我们得出结论,尽管将这些解决方案用作医疗决策支持工具具有潜力且在不断发展,但该研究领域仍需要更多工作来克服技术和方法严谨性问题,以便在实际临床环境中采用所提出的解决方案。
J Med Internet Res. 2022-2-17
Cochrane Database Syst Rev. 2022-10-4
Cochrane Database Syst Rev. 2022-11-11
Health Technol Assess. 2006-9
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2018-1-16
Cochrane Database Syst Rev. 2018-9-19
Cochrane Database Syst Rev. 2022-4-4
Cochrane Database Syst Rev. 2021-10-27
Healthcare (Basel). 2025-8-15
Environ Occup Health Pract. 2024-5-21
J Psychiatry Neurosci. 2025-2-7