Suppr超能文献

采用长期多模态移动表型分析对重症精神疾病患者的负面情绪进行个性化预测。

Personalized prediction of negative affect in individuals with serious mental illness followed using long-term multimodal mobile phenotyping.

作者信息

Webb Christian A, Ren Boyu, Rahimi-Eichi Habiballah, Gillis Bryce W, Chung Yoonho, Baker Justin T

机构信息

Harvard Medical School, Department of Psychiatry, Boston, MA, USA.

McLean Hospital, Belmont, MA, USA.

出版信息

Transl Psychiatry. 2025 May 19;15(1):174. doi: 10.1038/s41398-025-03394-4.

Abstract

Heightened negative affect is a core feature of serious mental illness. Over 90% of American adults own a smartphone, equipped with an array of sensors which can continuously and unobtrusively measure behaviors (e.g., activity levels, location, and phone usage patterns) which may predict increases in negative affect in real-time in individuals' daily lives. Sixty-eight adults with a primary mood or psychotic disorder completed daily emotion surveys for over a year, on average (mean 465 days; total surveys = 12,959). At the same time, semi-continuous collection of smartphone accelerometer, GPS location, and screen usage data, along with accelerometer tracking from a wrist-worn wearable device, was conducted for the duration of the study. A range of statistical approaches, including a novel personalized ensemble machine learning algorithm, were compared in their ability to predict states of heightened negative affect. A personalized ensemble machine learning algorithm outperformed other statistical approaches, achieving an area under the receiver operating characteristic curve (AUC) of 0.72 (for irritability) -0.79 (for loneliness) in predicting different negative emotions. Smartphone location (GPS) variables were the most predictive features overall. Critically, there was substantial heterogeneity between individuals in the association between smartphone features and negative emotional states, which highlights the need for a personalized modeling approach. Findings support the use of smartphones coupled with machine learning to detect states of heightened negative emotions. The ability to predict these states in real-time could inform the development and timely delivery of emotionally beneficial smartphone-delivered interventions which could be automatically triggered via a predictive algorithm.

摘要

消极情绪增强是严重精神疾病的核心特征。超过90%的美国成年人拥有智能手机,这些手机配备了一系列传感器,能够持续且不显眼地测量行为(如活动水平、位置和手机使用模式),而这些行为可能预示着个体日常生活中消极情绪的增加。68名患有原发性情绪或精神障碍的成年人平均完成了一年多的每日情绪调查(平均465天;总调查次数 = 12959次)。与此同时,在研究期间,对智能手机加速度计、GPS位置和屏幕使用数据进行了半连续收集,同时还收集了来自腕戴式可穿戴设备中的加速度计跟踪数据。研究比较了一系列统计方法,包括一种新颖的个性化集成机器学习算法,以预测消极情绪增强状态的能力。一种个性化集成机器学习算法优于其他统计方法,在预测不同消极情绪时,受试者工作特征曲线(AUC)下的面积为0.72(易怒)至0.79(孤独)。总体而言,智能手机位置(GPS)变量是最具预测性的特征。至关重要的是,智能手机特征与消极情绪状态之间的关联在个体之间存在很大的异质性,这凸显了个性化建模方法的必要性。研究结果支持使用智能手机结合机器学习来检测消极情绪增强状态。实时预测这些状态的能力可为开发和及时提供有益情绪的智能手机干预措施提供依据,这些干预措施可通过预测算法自动触发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ec9/12089529/f350bebf0c5c/41398_2025_3394_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验