Zheng Shao-Jun, Zheng Chun-Peng, Zhai Tian-Tian, Xu Xiu-E, Zheng Ya-Qi, Li Zhi-Mao, Li En-Min, Liu Wei, Xu Li-Yan
Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China.
Department of Surgical Oncology, Shantou Central Hospital, Shantou, 515041, Guangdong, China.
Ann Surg Oncol. 2023 Apr;30(4):2227-2241. doi: 10.1245/s10434-022-13026-6. Epub 2022 Dec 31.
This study aimed to construct a new staging system for patients with esophageal squamous cell carcinoma (ESCC) based on combined pathological TNM (pTNM) stage, radiomics, and proteomics.
This study collected patients with radiomics and pTNM stage (Cohort 1, n = 786), among whom 103 patients also had proteomic data (Cohort 2, n = 103). The Cox regression model with the least absolute shrinkage and selection operator, and the Cox proportional hazards model were used to construct a nomogram and predictive models. Concordance index (C-index) and the integrated area under the time-dependent receiver operating characteristic (ROC) curve (IAUC) were used to evaluate the predictive models. The corresponding staging systems were further assessed using Kaplan-Meier survival curves.
For Cohort 1, the RadpTNM4c staging systems, constructed based on combined pTNM stage and radiomic features, outperformed the pTNM4c stage in both the training dataset 1 (Train1; IAUC 0.711 vs. 0.706, p < 0.001) and the validation dataset 1 (Valid1; IAUC 0.695 vs. 0.659, p < 0.001; C-index 0.703 vs. 0.674, p = 0.029). For Cohort 2, the ProtRadpTNM2c staging system, constructed based on combined pTNM stage, radiomics, and proteomics, outperformed the pTNM2c stage in both the Train2 (IAUC 0.777 vs. 0.610, p < 0.001; C-index 0.898 vs. 0.608, p < 0.001) and Valid2 (IAUC 0.746 vs. 0.608, p < 0.001; C-index 0.889 vs. 0.641, p = 0.009) datasets.
The ProtRadpTNM2c staging system, based on combined pTNM stage, radiomic, and proteomic features, improves the predictive performance of the classical pTNM staging system.
本研究旨在基于联合病理TNM(pTNM)分期、放射组学和蛋白质组学构建一种新的食管鳞状细胞癌(ESCC)患者分期系统。
本研究收集了具有放射组学和pTNM分期的患者(队列1,n = 786),其中103例患者也有蛋白质组学数据(队列2,n = 103)。使用最小绝对收缩和选择算子的Cox回归模型以及Cox比例风险模型构建列线图和预测模型。一致性指数(C指数)和时间依赖性受试者工作特征(ROC)曲线下的综合面积(IAUC)用于评估预测模型。使用Kaplan-Meier生存曲线进一步评估相应的分期系统。
对于队列1,基于联合pTNM分期和放射组学特征构建的RadpTNM4c分期系统在训练数据集1(Train1;IAUC 0.711对0.706,p < 0.001)和验证数据集1(Valid1;IAUC 0.695对0.659,p < 0.001;C指数0.703对0.674,p = 0.029)中均优于pTNM4c分期。对于队列2,基于联合pTNM分期、放射组学和蛋白质组学构建的ProtRadpTNM2c分期系统在Train2(IAUC 0.777对0.610,p < 0.001;C指数0.898对0.608,p < 0.001)和Valid2(IAUC 0.746对0.608,p < 0.001;C指数0.889对0.641,p = 0.009)数据集中均优于pTNM2c分期。
基于联合pTNM分期、放射组学和蛋白质组学特征的ProtRadpTNM2c分期系统提高了经典pTNM分期系统的预测性能。