文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

外泌体来源的 CircWhsc1 通过激活 TRIM59/STAT3/Cyclin B2 通路促进心肌细胞增殖和心脏修复。

Extracellular vesicle-derived CircWhsc1 promotes cardiomyocyte proliferation and heart repair by activating TRIM59/STAT3/Cyclin B2 pathway.

机构信息

Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.

Department of Oncology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China.

出版信息

J Adv Res. 2023 Nov;53:199-218. doi: 10.1016/j.jare.2022.12.014. Epub 2022 Dec 29.


DOI:10.1016/j.jare.2022.12.014
PMID:36587763
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10658329/
Abstract

INTRODUCTION: Extracellular vesicles (EVs)-mediated cell-to-cell communication is crucial for hypoxia-induced cell proliferation and tissue repair, but its function in endogenous cardiac regeneration is still unknown. OBJECTIVES: Herein, we aimed to determine whether hypoxia-inducible circWhsc1 in endothelial EVs promoted cardiomyocyte (CM) proliferation and cardiac regeneration. METHODS: RNA-sequence data was used to identify EV circRNAs that were involved into endogenous cardiac regeneration. Quantitative polymerase chain reactions were conducted to determine circRNA expression in tissue, cells and EVs. Gain- and loss-of-function assays were performed to explore the function of EV-derived circWhsc1 during cardiac regeneration. Western blotting and RNA pulldown assays were used to investigate its underlying mechanism. RESULTS: We found that circWhsc1 was enriched in neonatal mouse hearts, particularly in cardiac ECs, and was further upregulated both in ECs and EC-derived EVs under hypoxic conditions. When cocultured with hypoxia-preconditioned neonatal ECs or their secreted EVs, both neonatal and adult CMs exhibited an increased proliferation rate and G2/M ratio, which could be attenuated by knockdown of circWhsc1 in ECs. In vivo, EC-restricted overexpression of circWhsc1 and EV-mediated delivery of circWhsc1 induced CM proliferation, alleviated cardiac fibrosis and restored cardiac function following myocardial infarction in adult mice. Mechanistic studies revealed that EV-derived circWhsc1 activated TRIM59 by enhancing its phosphorylation, thereby reinforcing the binding of TRIM59 to STAT3, phosphorylating STAT3 and inducing CM proliferation. CONCLUSION: The current study demonstrated that hypoxia-inducible circWhsc1 in EC-derived EVs induces CM proliferation and heart regeneration. EC-CM communication mediated by EV-derived circWhsc1 might represent a prospective therapeutic target for inducing cardiac repair post-myocardial infarction.

摘要

简介:细胞外囊泡(EV)介导的细胞间通讯对于缺氧诱导的细胞增殖和组织修复至关重要,但它在内源性心脏再生中的作用尚不清楚。

目的:本研究旨在确定内皮细胞 EV 中的缺氧诱导circWhsc1 是否促进心肌细胞(CM)增殖和心脏再生。

方法:利用 RNA 测序数据鉴定参与内源性心脏再生的 EV circRNAs。通过定量聚合酶链反应(qPCR)检测组织、细胞和 EV 中的 circRNA 表达。进行增益和缺失功能实验,以探讨 EV 衍生的 circWhsc1 在心脏再生过程中的功能。通过 Western blot 和 RNA 下拉实验研究其潜在机制。

结果:我们发现,circWhsc1 在新生鼠心脏中丰富,特别是在心脏 EC 中,在缺氧条件下,EC 和 EC 衍生的 EV 中进一步上调。当与缺氧预处理的新生 EC 或其分泌的 EV 共培养时,新生和成年 CM 的增殖率和 G2/M 比值均增加,而 EC 中的 circWhsc1 敲低可减弱该作用。在体内,EC 特异性过表达 circWhsc1 和 EV 介导的 circWhsc1 传递可诱导 CM 增殖,减轻心肌梗死后的心脏纤维化并恢复心脏功能。机制研究表明,EV 衍生的 circWhsc1 通过增强其磷酸化来激活 TRIM59,从而加强 TRIM59 与 STAT3 的结合,磷酸化 STAT3 并诱导 CM 增殖。

结论:本研究表明,EC 衍生 EV 中的缺氧诱导 circWhsc1 诱导 CM 增殖和心脏再生。EV 衍生的 circWhsc1 介导的 EC-CM 通讯可能代表心肌梗死后诱导心脏修复的有前途的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd0/10658329/0b2fc2c6c89d/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd0/10658329/73e3ab850ba7/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd0/10658329/63c2d3668c59/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd0/10658329/a07dc5849b1b/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd0/10658329/ae2076a0d2fc/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd0/10658329/4c86e802e0c8/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd0/10658329/801d4ecfb6c4/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd0/10658329/f723282a5874/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd0/10658329/2332dd404e4f/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd0/10658329/0b2fc2c6c89d/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd0/10658329/73e3ab850ba7/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd0/10658329/63c2d3668c59/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd0/10658329/a07dc5849b1b/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd0/10658329/ae2076a0d2fc/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd0/10658329/4c86e802e0c8/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd0/10658329/801d4ecfb6c4/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd0/10658329/f723282a5874/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd0/10658329/2332dd404e4f/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd0/10658329/0b2fc2c6c89d/gr8.jpg

相似文献

[1]
Extracellular vesicle-derived CircWhsc1 promotes cardiomyocyte proliferation and heart repair by activating TRIM59/STAT3/Cyclin B2 pathway.

J Adv Res. 2023-11

[2]
Diabetes impairs cardioprotective function of endothelial progenitor cell-derived extracellular vesicles via H3K9Ac inhibition.

Theranostics. 2022

[3]
Extracellular vesicles from human embryonic stem cell-derived cardiovascular progenitor cells promote cardiac infarct healing through reducing cardiomyocyte death and promoting angiogenesis.

Cell Death Dis. 2020-5-11

[4]
Regenerative potential of epicardium-derived extracellular vesicles mediated by conserved miRNA transfer.

Cardiovasc Res. 2022-1-29

[5]
Loss of Super-Enhancer-Regulated circRNA Nfix Induces Cardiac Regeneration After Myocardial Infarction in Adult Mice.

Circulation. 2019-4-5

[6]
miR-106a-363 cluster in extracellular vesicles promotes endogenous myocardial repair via Notch3 pathway in ischemic heart injury.

Basic Res Cardiol. 2021-3-19

[7]
LncRNA Snhg1-driven self-reinforcing regulatory network promoted cardiac regeneration and repair after myocardial infarction.

Theranostics. 2021

[8]
Mydgf promotes Cardiomyocyte proliferation and Neonatal Heart regeneration.

Theranostics. 2020

[9]
Hypoxic extracellular vesicles from hiPSCs protect cardiomyocytes from oxidative damage by transferring antioxidant proteins and enhancing Akt/Erk/NRF2 signaling.

Cell Commun Signal. 2024-7-9

[10]
Selective increase of cardiomyocyte derived extracellular vesicles after experimental myocardial infarction and functional effects on the endothelium.

Thromb Res. 2018-8-1

引用本文的文献

[1]
CircRNA Networks in CAD: Multi-Cellular Mechanisms and Clinical Potential.

Int J Gen Med. 2025-6-12

[2]
PTMA controls cardiomyocyte proliferation and cardiac repair by enhancing STAT3 acetylation.

Sci Adv. 2025-5-23

[3]
Recent advances in the roles of extracellular vesicles in cardiovascular diseases: pathophysiological mechanisms, biomarkers, and cell-free therapeutic strategy.

Mol Med. 2025-5-5

[4]
High-fat stimulation induces atrial structural remodeling via the TPM1/P53/SHISA5 Axis.

Lipids Health Dis. 2025-4-12

[5]
Therapeutic application of extracellular vesicles in human diseases.

Mol Ther. 2025-5-7

[6]
Extracellular Vesicles Derived From Regenerating Tissue Promote Stem Cell Proliferation in the Planarian .

J Extracell Biol. 2025-3-9

[7]
Extracellular vesicle-mediated bidirectional communication between the liver and other organs: mechanistic exploration and prospects for clinical applications.

J Nanobiotechnology. 2025-3-8

[8]
Extracellular vesicles in cardiovascular homeostasis and disease: potential role in diagnosis and therapy.

Nat Rev Cardiol. 2025-3-5

[9]
Unlocking the Potential of Extracellular Vesicles in Cardiovascular Disease.

J Cell Mol Med. 2025-2

[10]
Decoding the regulatory roles of circular RNAs in cardiac fibrosis.

Noncoding RNA Res. 2024-12-9

本文引用的文献

[1]
Roles and mechanisms of CircRNAs in ovarian cancer.

Front Cell Dev Biol. 2022-11-23

[2]
Hypoxia signaling in human health and diseases: implications and prospects for therapeutics.

Signal Transduct Target Ther. 2022-7-7

[3]
CircRNA Samd4 induces cardiac repair after myocardial infarction by blocking mitochondria-derived ROS output.

Mol Ther. 2022-11-2

[4]
Circular RNA WHSC1 exerts oncogenic properties by regulating miR-7/TAB2 in lung cancer.

J Cell Mol Med. 2021-10

[5]
Circular RNA Cdyl promotes abdominal aortic aneurysm formation by inducing M1 macrophage polarization and M1-type inflammation.

Mol Ther. 2022-2-2

[6]
Exosomes as mediators of intercellular crosstalk in metabolism.

Cell Metab. 2021-9-7

[7]
Transneuronal delivery of hyper-interleukin-6 enables functional recovery after severe spinal cord injury in mice.

Nat Commun. 2021-1-15

[8]
M2 microglial small extracellular vesicles reduce glial scar formation the miR-124/STAT3 pathway after ischemic stroke in mice.

Theranostics. 2021

[9]
STAT3-BDNF-TrkB signalling promotes alveolar epithelial regeneration after lung injury.

Nat Cell Biol. 2020-9-28

[10]
circRNA Hipk3 Induces Cardiac Regeneration after Myocardial Infarction in Mice by Binding to Notch1 and miR-133a.

Mol Ther Nucleic Acids. 2020-9-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索